

Produktkatalog für die industrielle Automatisierung

Diese Zylinder in glattem Design, ohne Kanten und von geradem Gesamteindruck, sind ideal für den Gebrauch in jenen Industriebereichen (Lebensmittel-, Pharmaindustrie usw.), in denen hohe technologische Zuverlässigkeit und einfache Reinigung verlangt werden.

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20 ÷ +80°C

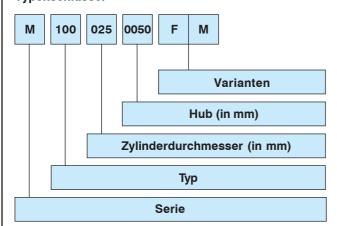
Medium: gefilterte, geölte oder ungeölte Druckluft

Zylinderrohr: aus nichtrostendem Stahl mit

geklemmten Zylinderköpfen

Standardhübe: siehe Tabelle auf Seite 4

Typ M160...max. Hub 50 mm Typ M170...max. Hub 25 mm Höchstgeschwindigkeit: max. 2 m/s ohne Dämpfung


max. 5 m/s mit pneumatischer Dämpfung

Auf Anfrage

- Magnetversion Ø 10 ÷ 25 mm. Magnetsensor Serie DH-... (Abschnitt Zubehör Seite 2) (für Ø 16 mm nur mit verchromter Kolbenstange Magnetsensor DH-500)
- Feststellvorrichtung Ø 16 ÷ 25 mm (Abschnitt High-Tech Seite 3) nur für Zylinder mit verchromter Kolbenstange Serie M2...
- Führungseinheiten ab Ø 16 (Abschnitt High-Tech Seite 31)

Typenschlüssel

SERIE

 $\mathbf{M} = \text{Mikrozylinder } \emptyset \ 8 \div 25 \ \text{mm}$

TYP	
1 , -,-	Nichtrostende Kolbenstange Standardversion
2 , _ , _]	Verchromte Kolbenstange Standardversion
3 , _ , _]	Nichtrostende Kolbenstange mit reduziertem Kolbenstangenüberstand
5 , _ , _	Nichtrostende Kolbenstange mit reduziertem

Kolbenstangenüberstand und Anschluß hinten

L-,0,0 D.W. Standardversion

L_, 0 , 1 D.W. durchgehende Kolbenstange

L__, 5 , 0 D.W. mit pneumatischer Endlagendämpfung, einstellbar von Ø 16 ÷ 25 mm

L-,5,1 D.W. durchgehende Kolbenstange mit Endlagendämpfung, einstellbar von Ø 16 ÷ 25 mm

L-,6,0 E.W. Kolbenstange eingefahren Ø 10 ÷ 25 mm, max. Hub 50 mm

[-,7,0] E.W. Kolbenstange ausgefahren Ø 16 ÷ 25 mm, max. Hub 25 mm

ZYLINDERDURCHMESSER

Ø 008 - 010 - 012 - 016 - 020 - 025

HUB

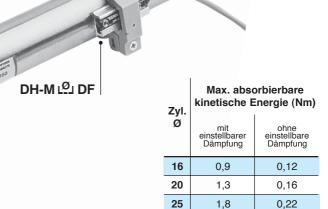
0010-0020-0025-0030-0040-0050-0075-0080-0100-0125-0150-0160-0175-0200-0250-0300-0320-0400-0500

VARIANTEN

- F = Ausgelegt für Feststelleinheit mit reduziertem Kolbenstangenüberstand
- $\mathbf{M} = \text{Magnetversion } \emptyset \ 10 \div 25 \ \text{mm}$

Einige Konstruktionsmerkmale

- Zylinderrohr aus nichtrostendem Stahl (AISI 304)
- Zylinderköpfe aus eloxierter
 Strangpreßaluminiumlegierung, geklemnt
- Mechanische Gummiendanschläge, serienmäßig bei Zylinderköpfen der Serie M100... Ø 12 ÷ 25 mm
- Mikrozylinder werden mit Kolbenstangenmutter (MF - 16 + Ø) und einer Mutter am Zylinderkopf geliefert (MF - 20 + Ø)


Kolben aus Aluminiumlegierung: Ø 20 - 25 mm;

18.09 (AISI 303)

aus Messing: Ø 8 - 16 mm

Kolbenstange aus rostfreiem gerolltem Stahl X10 CrNi S

- Pneumatische Dämpfung, einstellbar mit Schraube (Serie M150...), Ø 16 - 20 - 25 mm
- Selbstschmierende Dichtungen aus Nitrilgummi
- Kolben-Führungsbüchse aus Acetalharz: Ø 16 - 20 - 25 mm

Einfachwirkender Mikrozylinder

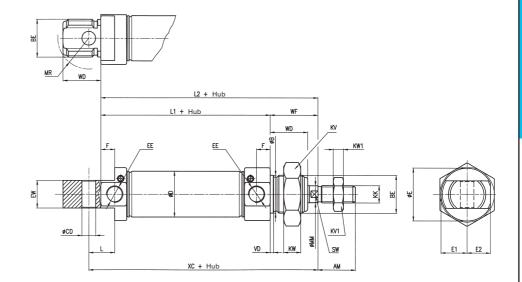
	Zyl. Ø	(die schwarz Werte sind Norme	rdhübe z gedruckten d laut UNI- en 4393 ziehen)		Zι	ıgkraft	der Fe	der min	ı-max (N)			se des sen Teils	Masse		
	D	160	170	Huk	10	Hul	25	Hul	o 40	Hul	b 50	Hub 0 kg	Zuschlag pro mm (g)	Hub 0 kg	Zuschlag pro mm (g)	
	10	10 - 25 40 - 50		6,9	7,6	5,8	7,6	4,7	7,6	4	7,6	0,009	0,1	0,038	0,23	
	12	10 - 25 40 - 50		8,1	8,7	7,3	8,7	6,5	8,7	5,9	8,7	0,023	0,22	0,079	0,38	
	16	10 - 25 40 - 50	10 - 25	14,4	16	11,9	16	9,4	16	7,8	16	0,026	0,22	0,085	0,43	
_	20	10 - 25 40 - 50	10 - 25	18,6	20	16,5	20	14,4	20	13	20	0,045	0,4	0,167	0,66	
	25	10 - 25 40 - 50	10 - 25	21,8	23,5	19,3	23,5	16,7	23,5	15	23,5	0,08	0,62	0,238	0,95	

Doppelwirkender Mikrozylinder

Zyl.	•	1	chub- kraft Zugkra- bei ft bei	Masse des bewegten Teils	Masse Zylinder	Dämpfu- ngs-								
ø 	(die schwarz gedruckten Wer	, ,	min. 6 bar 6 bar N N	Hub 0 (kg) Zuschlag pro mm (g)	Hub 0 (kg) Zuschlag pro mm (g)	strecke in mm								
8	10 20 25 30 40 50 75 80 100 1	25 150 160	20 16	0,007 0,1	0,037 0,21	-								
10	10 20 25 30 40 50 75 80 100 1	25 150 160	35 32	0,009 0,1	0,038 0,23	-								
12	10 20 25 30 40 50 75 80 100 1	25 150 160 175 200 250	50 38	0,023 0,22	0,078 0,38	-								
16	10 20 25 30 40 50 75 80 100 1	25 150 160 175 200 250	90 87	0,023	0,085	16								
• 16	25 30 40 50 75 80 100 1	25 150 160 175 200 250 300 320 400 500	90 07	0,025	0,087	10								
20	10 20 25 30 40 50 75 80 100 1	25 150 160 175 200 250 300	148 140	0,045	0,167	18								
• 20	25 30 40 50 75 80 100 1	25 150 160 175 200 250 300 320 400 500	140 140	0,048	0,17	10								
25	10 20 25 30 40 50 75 80 100 1	25 150 160 175 200 250 300 320 400 500		0,080	0,237									
• 25	25 30 40 50 75 80 100 1	25 150 160 175 200 250 300 320 400 500	250 220	0,62	0,95	22								
Vers	ion mit regulierbarer pneumatischer D	ersion mit regulierbarer pneumatischer Dämpfung												

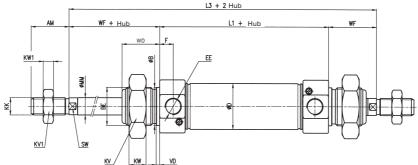
 $UNIVER\,ist\,in\,der\,Lage,\,die\,Zylinder\,auch\,mit\,Millimetervarianten\,(Zwischenhublängen)\,oder\,mit\,Hublängen\,auszuliefern,\,die\,\ddot{u}ber\,dem\,Standardhub\,liegen.$

Serie M 100


Serie M 150

Serie M 160

Serie M 170

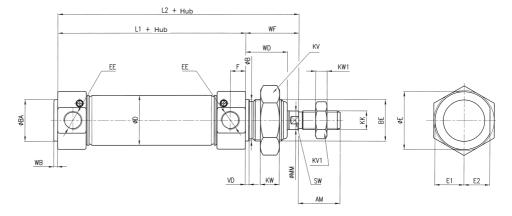

Doppelwirkende Zylinder mit durchgehender Kolbenstange

Serie M 101

Serie M 151

	_	_	ø	_		_	_	_	_	_		_	_
Zyl.	AM	В	BA	BE	CD	D	øΕ	E1	E2	* EE	EW	KV	KV1
Ø		h 10			Н9						d 13		
8	12	12		M12 x 1,25	4	9,3	14	8	8,5	M5 x 0,8	8	19	7
10	12	12		M12 x 1,25	4	11,3	14	8	8,5	M5 x 0,8	8	19	7
12	16	16		M16 x 1,5	6	13,3	17	9,5	10	M5 x 0,8	12	24	10
16	16	16	16	M16 x 1,5	6	17,3	20,8	10,4	9,6	M5 x 0,8	12	24	10
20	20	22	22	M22 x 1,5	8	21,6	27,7	13,85	12	G 1/8	16	32	13
25	22	22	22	M22 x 1,5	8	26,6	30,7	15,35	13,75	G 1/8	16	32	17

Zyl.	F	кк	KW	KW1	L	L1	L2	L3	ММ	MR	sw	VD	WA	WD	WF	хс
Ø											(J				± 1,2	± 1
8	5	M4 x 0,7	7	2,8	7	46	62	78	4	12	3	1,5		12	16	64
10	5	M4 x 0,7	7	2,8	7	46	62	78	4	12	3	1,5		12	16	64
12	5	M6 x 1	8	4	9	50	72	94	6	16	5	1,5		17	22	75
16	5,5	M6 x 1	8	4	8	56	78	100	6	16	5	1,5	5,5	17	22	82
20	8	M8 x 1,25	10	5	11	68	92	116	8	18	7	2	5,5	19	24	95
25	8	M10 x 1,25	10	6	15	69	97	125	10	18	9	2	7,5	22	28	104


^{*} Diese Serie ist nach UNI-ISO 228/1 ausgewählt

Einfachwirkender Zylinder mit eingefahrener/ausgefahrener Kolbenstange Ø 16-20-25 mm

Serie M 350

Doppelwirkender Zylinder, nicht gedämpft, Standardspeisung Ø 10 ÷ 25 mm

Serie M 300

Doppelwirkender Zylinder, nicht gedämpft, Speisung hinten, Ø 10 ÷ 25 mm

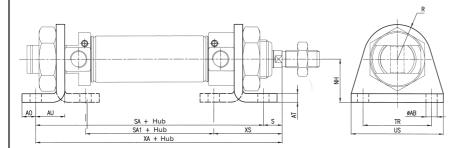
Einfachwirkender Zylinder, eingefahrene Kolbenstange Ø 10 ÷ 25 mm; einfachwirkend, ausgefahrene Kolbenstange Ø 16 ÷ 25 mm, beide mit Standardspeisung

Serie M 360

Einfachwirkender Zylinder mit eingefahrener Kolbenstange, Speisung hinten, Ø 10 \div 25 mm

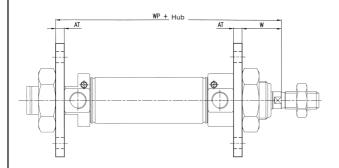
Serie M 560

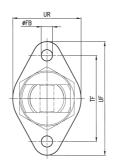
Serie M 370


Zyl.	AM	В	BA	BE	D	E	E1	E2	*EE	K۷	KV1
Ø		h10	Ø			Ø					
10	12	12	12	M12 x 1,25	11,3	15,8	7,9	7,2	M5 x 0,8	19	7
12	16	16	16	M16 x 1,5	13,3	18,8	9,4	8,7	M5 x 0,8	24	10
16	16	16	16	M16 x 1,5	17,3	20,8	10,4	9,6	M5 x 0,8	24	10
20	20	22	22	M22 x 1,5	21,6	27,7	13,85	12	G 1/8	32	13
25	22	22	22	M22 x 1,5	26,6	30,7	15,35	13,75	G 1/8	32	17

Zyl. Ø	F	KK Z	KW	KW1	L1	L2	ММ	SW	VD	WA	WB	WD	WF ± 1,2
10	5	M4 x 0,7	7	2,8	46	62	4	3	1,5	4		12	16
12	5	M6 x 1	8	4	50	72	6	5	1,5	4,5		17	22
16	5,5	M6 x 1	8	4	56	78	6	5	1,5	5,5	1,5	17	22
20	8	M8 x 1,25	10	5	68	92	8	7	2	5,5	2	19	24
25	8	M10 x 1,25	10	6	69	97	10	9	2	9	2	22	28

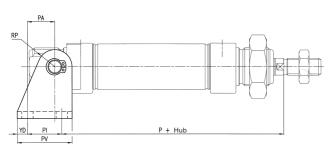
[★] Diese Serie ist nach UNI-ISO 228/1 ausgewählt

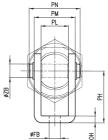



Fußbefestigung aus verzinktem Stahl Ø 8 \div 25 mm (MS 3)

7	'yl.	АВ	АО	AT	AU	NH	R	s	SA	SA1	TR	US	XA	xs		
	Ø	H13			+0,3 0	±0,3					Js14			±1,4	Masse kg	ТуР
8	-10	4,5	5	3	11	16	10	5	68	30	25	35	73	24	0,02	MF-13008
	12	5,5	6	4	14	20	13	8	78	30	32	42	86	32	0,04	MF-13012
	16	5,5	6	4	14	20	13	8	84	36	32	42	92	32	0,04	MF-13012
-	20	6,6	8	5	17	25	20	7	102	44	40	54	109	36	0,09	MF-13020
-:	25	6,6	8	5	17	25	20	11	103	45	40	54	114	40	0,09	MF-13020

Flansch aus verzinktem Stahl Ø 8 ÷ 25 mm (MF 8)





Zyl.	AT	FB	TF	UF	UR	w	WP	Masse	Тур
Ø		H13	Js14			±1,4		kg	176
8-10	3	4,5	30	40	25	13	65	0,012	MF-12008
12	4	5,5	40	53	30	18	76	0,025	MF-12012
16	4	5,5	40	53	30	18	82	0,025	MF-12012
20	5	6,6	50	66	40	19	97	0,049	MF-12020
25	5	6,6	50	66	40	23	102	0,049	MF-12020

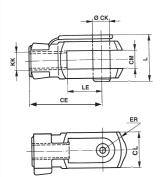
Hinterer Gelenklagerbock aus verzinktem Stahl, Ø 8 \div 25 mm mit Bolzen und zwei Seeger-Ringen

Zyl.	Ø FB	он	Р	PA	РН	PI	PL	РМ	PN	PV	RP	YD	ZB	Masse	Тур
Ø	H13						E9						f8	kg	.,,,,
8-10	4,5	2,5	62,5	11	24	12,5	8,1	13,1	17	20	5,3	3,8	4	0,019	MF - 21008
12	5,5	3	73	13	27	15	12,1	18,1	23	25	7	5	6	0,037	MF - 21012
16	5,5	3	80	13	27	15	12,1	18,1	23	25	7	5	6	0,037	MF - 21012
20	6,6	4	91	16	30	20	16,1	24,1	30	32	10	6	8	0,08	MF - 21020
25	6,6	4	100	16	30	20	16,1	24,1	30	32	10	6	8	0,08	MF - 21020

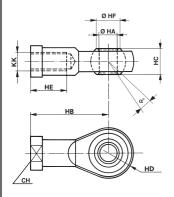
Kolbenstangenmutter aus verzinktem Stahl

Zyl. Ø	кк	KW1 ⊝ౌ	KW1	Тур
8-10	M4 x 0,7	7	2,8	MF - 16008
12-16	M6 x 1	10	4	MF - 16012
20	M8 x 1,25	13	5	MF - 16020
25	M10 x 1,25	17	6	KF - 16032

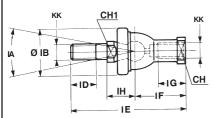
Zylinderkopfmutter aus verzinktem Stahl



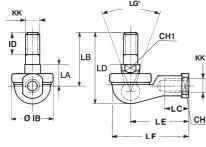
Zyl. Ø	BE	KV ⊖ੌ	KW	Тур
8-10	M12 x 1,25	19	7	MF - 20008
12-16	M16 x 1,5	24	8	MF - 20012
20-25	M22 x 1,5	32	10	MF - 20020



Gabelgelenk aus verzinktem Stahl für Kolbenstange nach ISO-Norm 8140 mit Bolzen


Zyl.	CE	СК	CL	CM B12	ER	KK	L	LE	Masse	Тур
Ø				B12					kg	Тур
8-10	16	4	8	4	5	M4 x 0,7	11	8	0,007	MF - 15008
12-16	24	6	12	6	7	M6 x 1	16	12	0,019	MF - 15012
20	32	8	16	8	10	M8 x 1,25	22	16	0,046	MF - 15020
25	40	10	20	10	16	M10 x 1,25	26	20	0,09	KF - 15032

Selbstschmierendes Gelenkgabelstück aus verzinktem Stahl


	α	СН	KK	НА	НВ	нс	HD	HE	HF		
Zyl. Ø				Н7			0 -0,12			Masse kg	Тур
8-10	13°	9	M4 x 0,7	5	27	8	9	10	7,7	0,018	MF - 17008
12-16	13°	11	M6 x 1	6	30	9	10	12	9	0,026	MF - 17012
20	14°	14	M8 x 1,25	8	36	12	12	16	10,4	0,046	MF - 17020
25	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032

Gabelstück mit Gelenkzapfen

Zyl. Ø	СН	CH1	IA	КК	1H ±0,3	ΙB	ID	ΙE	IF	IG	Masse kg	Тур
12-16	11	8	30°	M6 x 1	12,2	22	11	55,2	28	15	0,04	MF - 22016
20	14	10	30°	M8 x 1,25	16	28	12	65	32	16	0,075	MF - 22020
25	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025

Gabelstück mit Winkelgelenkzapfen

	Zyl.	СН	CH1	LG	KK	IB	ID	LA	LB	LC	LD	LE	LF	Masse	Тур
ζ.	Ø	5	5					±0,3						kg	
	12-16	11	8	50°	M6 x 1	22	11	11	26	14	35,5	30	40	0,037	MF - 23012
	20	14	10	50°	M8 x 1,25	28	12	14	31	17	42,5	36	48	0,067	MF - 23020
`	25	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025

Die UNIVER-Druckluftzylinder nach ISO 6431 und VDMA 24562 beinhalten die Verbesserungen, die aus der technologischen Weiterentwicklung hervorgegangen sind; sie sind imstande, auch die anspruchsvollsten Kunden zufriedenzustellen.

Ein wichtiges Merkmal der Zylinder ist der ölfreie Betrieb, dank dessen ihr Einsatz in vielen Industriegebieten und unter Berücksichtigung der Umwelt möglich ist. Die robuste Konstruktion und die verwendeten Bauteile gewährleisten anspruchsvolle Funktionseigenschaften und lange Betriebsdauer.

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20 ÷ +80°C

Medium: gefilterte, geölte oder ungeölte Druckluft Zylinderrohr aus Aluminium, innen und außen eloxiert Zylinderdurchmesser: Serie KD 32 ÷ 125 Zylinderrohrprofil

aus Aluminium mit Profil für versenkte Sensoren,

Magnetausführung Standard. Serie K 32 ÷ 200 Zylinderrohr mit

Rundprofil aus Aluminium und Zugstangen aus Stahl,

Magnetausführung auf Anfrage.

Versenkter Magnetschalter Serie DF-..., für Serie KD. Drahtabdeckungsband für Magnetsensor für Serie KD-Artikelnr. DHF-002100.

Magnetsensor Serie DH-___ für Serie K.

(Abschnitt Zubehör Seite 2). Zubehör ab Seite 20

Ausführungen auf Anfrage

- Magnetring aus Plastoferrit
- Feststelleinheit Ø 32 ÷ 125 mm nur mit verchromter Kolbenstange verwendbar (Abschnitt High-Tech Seite 3)
- Führungseinheit Ø 32 ÷ 100 mm (Abschnitt High-Tech Seite 31)
- Zylinder mit starrer Führungsbuchse Tandem- und Mehrstellungsausführung sowie mit entgegengesetzten Kolbenstangen (Seite 16).

Einige Konstruktionseigenschaften

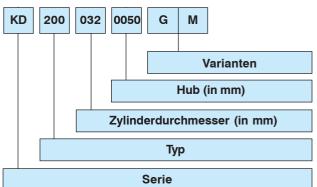
Zylinderrohr aus verdrehfestem Strangpreßprofil in Aluminiumlegierung mit Rippenmuster, ohne Stockungspunkte. Innen und außen eloxiert, 15 micron.

Zylinderköpfe aus Aluminium-Druckgußlegierung werden mit gewindebildenden Stahlschrauben in den vorgebohrten Löchern an das Zylinderrohr geschraubt.

Einstellbare pneumatische Dämpfungen ermöglichen eine wirkungsvolle Dämpfung des Kolbens.

Endanschläge aus synthetischem Material: sie vermindern die mechanische Beanspruchung und senken den Betriebslärmpegel (< 50 dB).

Druckgußkolben aus Aluminiumlegierung und Führungsschlitten aus Azetalharz mit Permanentmagnetring aus Plastoferrit (auf Wunsch für die Magnetversion).


Kolbendichtungen und Endlagendämpfung aus verschleißfester Nitrilmischung, geeignet für Betrieb mit oder ohne Schmierung. Die Doppellippenform gewährleistet eine hohe Dauer-Gleichdichtigkeit.

Kolbenstange aus nichtrostendem Stahl, Oberfläche verhärtet (Serie KD100) oder aus verstärktem, verchromtem Stahl (Serie KD200) mit Ra 0,2 Mikron mit Schraubenmutter versehen.

Selbstschmierende und selbstausrichtende Führungsbüchse, original von UNIVER. Für spezielle Anwendungen werden auf Anfrage starre Messingbuchsen geliefert.

Die Zylinder 125-160-200 sind serienmäßig mit starren Messingbuchsen ausgestattet.

Typenschlüssel

Serie KD-...

SERIE

 $\mathbf{KD} = \emptyset$ 32 ÷ 125 mm Magnetausführung Standard. $\mathbf{K} = \emptyset$ 32 ÷ 200 mm Magnetausführung auf Anfrage.

TYP

1,0,0 D.W. Kolbenstange aus rostfreiem Stahl

1,0,1 D.W. durchgehende rostfreie Kolbenstange

<u>1,6,0</u> **E.W.** eingefahrene rostfreie Kolb., max. Hub 50 mm

1,7,0 E.W. ausgefahrene rostfreie Kolb., max. Hub 50 mm

2 0 0 D.W. verchromte Kolbenstange

<u>**D.W.**</u>durchgehende verchromte Kolbenstange

<u>L2,6,0</u> E.W. eingefahrene verchromte Kolb., max. Hub 50 mm

L2 7 0 E.W. ausgefahrene verchr. Kolb., max. Hub 50 mm

ZYLINDERDURCHMESSER

Ø 32 - 40 - 50 - 63 - 80 - 100 - 125 - 160 - 200 mm

HUE

Standardhublängen: 0025 - 0050 - 0075 - 0080 - 0100 0125 - 0150 - 0160 - 0175 - 0200 - 0250 - 0300 - 0320 - 0350 0400 - 0450 - 0500 - 0600 - 0700 - 0800 - 0900 - 1000

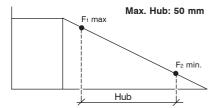
VARIANTEN

F = Ausgelegt für Feststelleinheit mit reduziertem Kolbenstangenüberstand

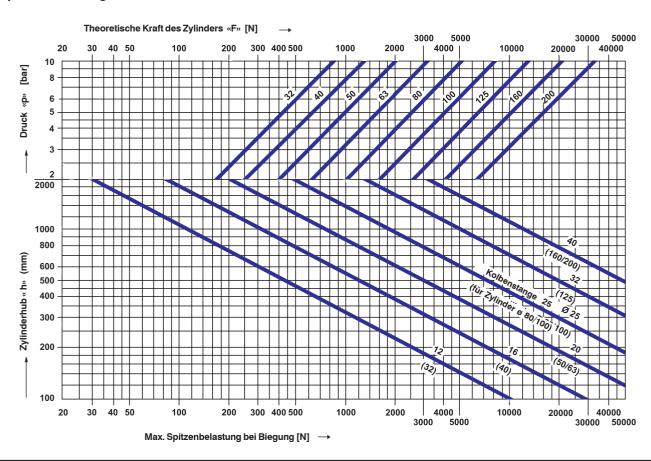
G = Ausgelegt für Feststelleinheit mit Kolbenstangenüberstand nach ISO

M = Magnetversion

		tische K Betriebsd			• •	,	MPa	Däm	pfung
Zyl.	Nutzfläc	he (mm²)		Betrie	bsdruc	k (bar)		Länge	Max. absorbierbare kinetische
Ø			2	4	6	8	10	(mm)	Energie (J)
32	Schubkraft Zugkraft	804 691	161 138	322 276	482 414	643 553	804 691	18	1,8
40	Schubkraft Zugkraft	1256 1056	251 211	502 422	754 633	1005 844	1256 1055	24	2,5
50	Schubkraft Zugkraft	1962 1649	393 330	785 660	1178 990	1570 1320	1963 1650	24	4,5
63	Schubkraft Zugkraft	3116 2802	623 560	1246 1120	1869 1680	2493 2240	3116 2800	30	8
80	Schubkraft Zugkraft	5024 4533	1005 907	2010 1814	3014 2722	4019 3629	5024 4536	30	12
100	Schubkraft Zugkraft	7850 7359	1570 1472	3140 2944	4710 4416	6280 5888	7850 7360	35	21
125	Schubkraft Zugkraft	12266 11462	2453 2294	4906 4588	7359 6882	9812 9176	12266 11470	35	36
160	Schubkraft Zugkraft	20096 18840	4019 3770	8038 7540			20096 18850	45	52
200	Schubkraft Zugkraft	31400 30144	6280 6029				31400 30144	45	95

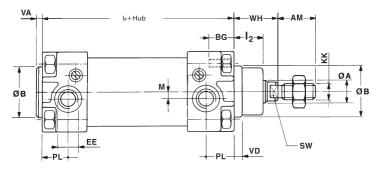

Bei Druckluftzylindern mit durchgehender Kolbenstange wirkt die Kraft in beiden Richtungen und sie entspricht immer dem in der Tabelle unter "Zugkraft" angeführten Wert. Die Werte in der Tabelle sind theoretische Werte, für die praktische Anwendung müssen sie unter Berücksichtigung des Gewichts und der Gleitreibung des bewegten Teils (~-10%) vermindert werden.

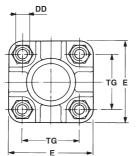
Einfachwirkende Zylinder

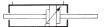


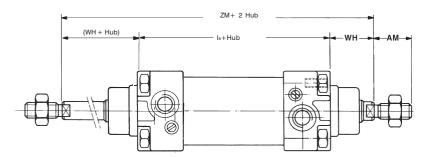
Theoretische Rückstellkraft (N)

Zyl. Ø	F₁ (N) Max. Federkraft Hub "0"	F $_2$ (N) Min. Federkraft Hub 50
32	52	28
40	70	42,5
50	98	48
63	98	48
80	140	80
100	140	80
125	235	175
80	140 140	80


Verlauf der theoretischen Schubkräfte je nach Druck und möglichem Hub, entsprechend der maximaler Spitzenbelastung






Zylinder mit pneumatischer Dämpfung Ø 32 \div 200

Nenntoleranz auf den Hub

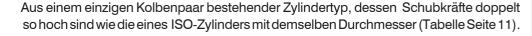
Zyl. Ø	Hübe (mm)	Toleranz auf den Hub (mm)
32 40	bis 500	+2 0
50	von 501 bis 1.250	+3,2 0
63 80	bis 500	+2,5 0
100	von 501 bis 1.250	+4
125 160	bis 500	+4 0
200	von 501 bis 1.250	+5 0

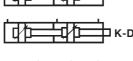
Zyl. Ø	Α	AM (Anmerkung 1)	B e11	BG	DD	Е	EE (Anmerkung 2)	I_2	Nom.	8 Toll.	KK (Anmerkung 1)	М	PL	sw	Nom.	Toll.	VD	VA	wн	ZM
32	12	22	30	14	M6	48	G 1/8	16	94	±0,4	M10 x 1,25	4,5	15	10	32,5	±0,5	5	3	26	146
40	16	24	35	14	M6	54	G 1/4	20	105	±0,7	M12 x 1,25	5	18	13	38	±0,5	6	4	30	165
50	20	32	40	16	M8	67	G 1/4	26	106	±0,7	M16 x 1,5	6	18	17	46,5	±0,6	6	4	37	180
63	20	32	45	16	M8	78	G 3/8	26	121	±0,8	M16 x 1,5	8	21,5	17	56,5	±0,7	6	4	37	195
80	25	40	45	16	M10	97	G 3/8	32	128	±0,8	M20 x 1,5	7,5	21,5	22	72	±0,7	8	5 ■	46	220
100	25	40	55	16	M10	115	G 1/2	35	138	±1	M20 x 1,5	9	21,5	22	89	±0,7	8	6 ■	51	240
125	32	54	60	20	M12	140	G 1/2	45	160	±1	M27 x 2	11	24,5	27	110	±1,1	10	7	65	290
160*	40	72	65	25	M16	180	G 3/4	50	180	±1,1	M36 x 2	14	29	36	140	±1,1	10	6	80	340
200*	40	72	75	25	M16	220	G 3/4	60	180	±1,1	M36 x 2	14	29	36	175	±1,1	12	6	95	370

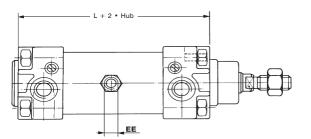
ANMERKUNG 1: Die Abmessungen "KK" und "AM" entsprechen dem ISO-Typ 4395 "lang" ■ Maße nach Normen nur auf Anfrage
* Ø 160 und Ø 200 mit Aluminiumrohr und Stahlzugstangen

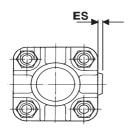
Zylindermasse Serie K

Zyl. Ø	Zylinder bei Hub "0" (kg)	Zuschlag pro mm Hub (g)	Beweglicher Teil Hub "0" (kg)	Zuschlag pro mm Hub (g)	Zylinder bei Hub "0" (kg)	Zuschlag pro mm Hub (g)	Beweglicher Teil Hub "0" (kg)	Zuschlag pro mm Hub (g)	
32	0,51	2,35	0,13	0,9	0,64	3,24	0,20	1,8	
40	0,77	3,24	0,24	1,6	0,92	4,80	0,37	3,2	
50	1,21	4,75	0,43	2,5	1,51	7,22	0,64	5,0	
63	1,74	5,78	0,47	2,5	2,03	8,25	0,75	5,0	
80	2,74	8,64	0,95	3,9	3,26	12,50	1,37	7,8	
100	3,78	10,4	1,18	3,9	4,38	14,30	1,60	7,8	
125	6,59	14,8	2,18	6,3	7,80	21,10	3,20	12,6	
160	14,60	16,9	4,02	9,9	16,85	26,80	5,94	19,8	
200	16,50	18,5	4,78	9,9	19,90	28,40	6,80	19,8	


Zylindermasse Serie KD


		Ē				Ē		
Zyl. Ø	Zylinder bei Hub "0" (kg)	Zuschlag pro mm Hub (g)	Beweglicher Teil Hub "0" (kg)	Zuschlag pro mm Hub (g)	Zylinder bei Hub "0" (kg)	Zuschlag pro mm Hub (g)	Beweglicher Teil Hub "0" (kg)	Zuschlag pro mm Hub (g)
32	0,53	2,8	0,13	0,9	0,66	3,7	0,20	1,8
40	0,80	4,0	0,24	1,6	0,95	5,5	0,37	3,2
50	1,27	6,0	0,43	2,5	1,57	8,5	0,64	4,9
63	1,76	6,2	0,47	2,5	2,05	8,7	0,75	4,9
80	2,86	10,8	0,95	3,9	3,38	14,7	1,37	7,7
100	3,95	13,4	1,18	3,9	4,55	17,3	1,60	7,7
125	6,87	18,6	2,18	6,3	8,08	24,9	3,20	12,6


Tandemzylinder -



Zyl. Ø	EE	L	S (max)
32	G 1/8	169	3
40	G 1/4	189	5
50	G 3/8	175	4
63	G 3/8	195	7
80	G 1/2	211	6
100	G 1/2	224	9
125	G 1/2	251	9

SERIE

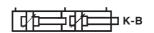
K = Druckluftzylinder ISO 6431 e VDMA 24562
 KD = Druckluftzylinder ISO 6431 e VDMA 24562
 Magnetausführung

TYP

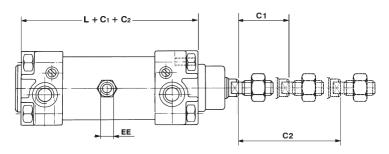
Nichtrostende Kolbenstange

- **1A** Doppelte Schubkraft nur bei ausfahrender Kolbenstange
- **1D** Doppelte Schubkraft nur bei einfahrender Kolbenstange

Verchromte Kolbenstange


- **2A** Doppelte Schubkraft nur bei ausfahrender Kolbenstange
- **2D** Doppelte Schubkraft nur bei einfahrender Kolbenstange

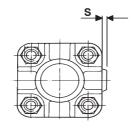
VARIANTE


M = Magnetausführung auf Anfrage für Serie K

Zweistellungszylinder

Ein Zylindertyp, aus einem unabhängigen Kolbenstangenpaar bestehend, der ein doppeltes Positionieren erlaubt und bei dem die Schubkräfte denen eines ISO-Zylinders mit demselben Durchmesser entsprechen (Tabellen auf Seite 11)

Zyl. Ø*	EE	L (mm)	S (max)
32	G 1/8	166	3
40	G 1/4	186	5
50	G 1/4	172	4
63	G 3/8	192	7
80	G 3/8	208	6
100	G 1/2	221	9
125	G 1/2	248	9

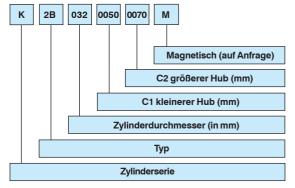

Magnetisch (auf Anfrage)

Hub (in mm)

Zylinderdurchmesser (in mm)

Тур

Zvlinderserie



Typenschlüssel

Typenschlüssel

032

0050

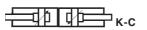
SERIE

K = Druckluftzylinder ISO 6431 e VDMA 24562
 KD = Druckluftzylinder ISO 6431 e VDMA 24562
 Magnetausführung

TYF

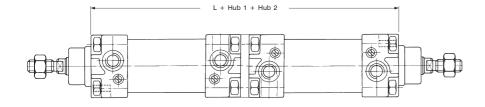
Nichtrostende Kolbenstange

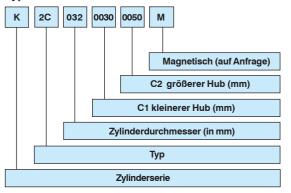
1B Doppelwirkend


Verchromte Kolbenstange

2B Doppelwirkend

VARIANTE


M = Magnetausführung auf Anfrage für Serie K



Gegenübergestellter Zylinder Koppelung zweier Zylinder, deren Kolbenstangen sich in entgegengesetzter Richtung bewegen. Die Schubkräfte entsprechen denen der traditionellen Zylinder (Tabellen Seite 11).

Zyl. Ø*	L
32	194
40	220
50	222
63	252
80	266
100	288
125	334
160	378
200	382

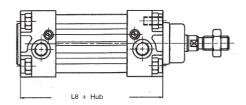
Typenschlüssel

SERIE

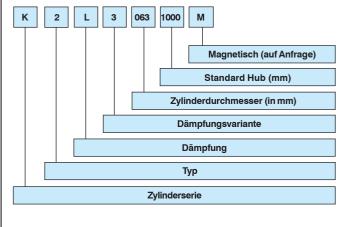
K = Druckluftzylinder ISO 6431 e VDMA 24562 KD = Druckluftzylinder ISO 6431 e VDMA 24562 Magnetausführung

TYP

- doppelwirkend, nichtrostende Kolbenstange
- doppelwirkend, verchromte Kolbenstange


MAGNETISCH

= Magnetausführung auf Anfrage für Serie K


Druckluftzylinder mit langer Dämpfung

Zylindertyp Ø 40-50-63-80 mm, abgeleitet von den Serien K und KD, mit langer innerer Dämpfung zum Einsatz für das Öffnen und Schliessen von Trennwänden oder zum Einsatz in den Sektoren, in denen eine im Vergleich zum traditionellen Typ kontrolliertere progressive und konstante Dämpfung am Ende des Hubs gefordert wird. Abmessungen (mit Ausnahme der angegebenen) und Zubehör sind dieselben.

Dämpfungslänge									
Ø	75	100	150	200					
		+ Hub							
40	182	232	332	432					
50	178	228	328	428					
63	185	235	335	435					
80	190	240	340	440					

Typenschlüssel

SERIE

- K = Druckluftzylinder ISO 6431 e VDMA 24562 KD = Druckluftzylinder ISO 6431 e VDMA 24562
 - Magnetausführung

TYP

- 1 = DW Kolbenstange aus Stahl
- 2 = Dw Kolbenstange aus rostfreiem Stahl

DÄMPFUNG

L = Lang

DÄMPFUNGVARIANTE

- 1 = 075 mm
- **2** = 100 mm
- **3** = 150 mm
- 4 = 200 mm

ZYLINDERDURCHMESSER

040-050-063-080 mm

Ein dreimal höherer Mindesthub als der in der Tabelle aufgeführten wird empfohlen.

MAGNETISCH

M = Magnetausführung auf Anfrage für Serie K

Zyl. Ø	Artikelnr.	Masse kg
32	KF-10032A	0,06
40	KF-10040A	0,08
50	KF-10050A	0,15
63	KF-10063A	0,25
80	KF-10080A	0,36
100	KF-10100A	0,6
125	KF-10125A	1,8
160	KF-10160A	2,4
200	KF-10200A	3,5

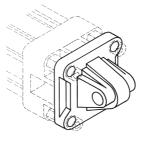
Artikelnr.

KF-11032

KF-11040

KF-11050

KF-11063


KF-11080

KF-11100

KF-11125

KF-11160

KF-11200

Hinteres Gelenklager XD + Hub

kq

0,08

0,1

0,17

0,25

0,42

2,3

3,5

Vorderer/hinterer Flansch aus verzinktem Stahl, ISO MF1-MF2

Gelenkabmessungen ISO MP2 - MP4

(auf Anfrage gemäß VDMA-Norm)

Befestigungsschrauben auf Seite 18 6431 **VDMA** 24562

Gelenkabmessungen ISO MT4

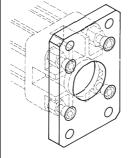
Zyl.

32

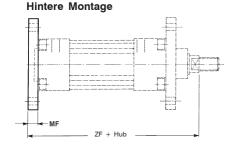
40

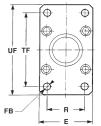
50

63

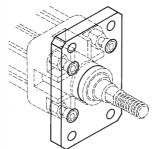

80

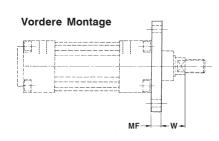
100


125

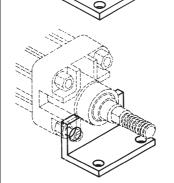

160

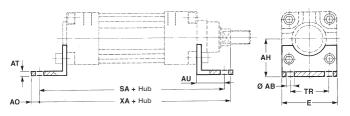
200

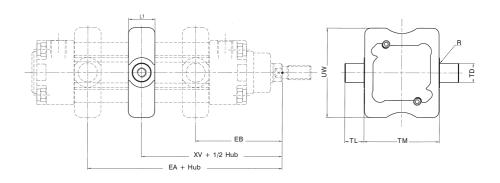



Bolzen auf Seite 18-I.

Zyl. Ø	Artikelnr.	Masse kg
32	KF-12032	0,2
40	KF-12040	0,25
50	KF-12050	0,5
63	KF-12063	0,65
80	KF-12080	1,5
100	KF-12100	2,2
125	KF-12125	4,1
160	KF-12160	7
200	KF-12200	12,4


Zyl.	СВ	CD	E	=	w	FL	١.	MR	MR1*	UB	١,	Œ	Е	FB	MF	R	TF	UF	v	v	۔ ا	'F
Ø	H14	H9	_	Nom.	Toll.	±0,2	(min)	(max)	1	h14	Nom.	Toll.	_	H13			JS14	O.	Nom.		Nom.	_
32	26	10	48	26		22	12	11	15*	45	142	±1,25	45	7	10	32	64	80	16	±1,6	130	±1,25
40	28	12	54	28		25	15	13	18*	52	160	±1,25	52	9	10	36	72	90	20	±1,6	145	±1,25
50	32	12	65	32	-0,2	27	15	13	20*	60	170	±1,25	65	9	12	45	90	110	25	±1,6	155	±1,25
63	40	16	75	40	-0,6	32	20	17	23*	70	190	±1,6	75	9	12	50	100	120	25	±2	170	±1,6
80	50	16	95	50		36	20	17	27*	90	210	±1,6	95	12	16	63	126	150	30	±2	190	±1,6
100	60	20	115	60		41	25	21	29,5*	110	230	±1,6	115	14	16	75	150	170	35	±2	205	±1,6
125	70	25	140	70		50	30	26	26	130	275	±2	140	16	20	90	180	205	45	±2,5	245	±2
160	90	30	180	90	-0,5 -1,2	55	35	31	30*	170	315	±2	180	18	20	115	230	260	60	±2,5	280	±2
200	90	30	220	90		60	35	31	30*	170	335	±2	220	22	25	135	270	300	70	±2,5	300	±2

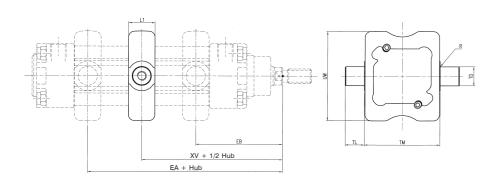

* ungenormte Abmessung


Zyl. Ø	Artikelnr.	Masse kg
32	KF-13032	0,07
40	KF-13040	0,09
50	KF-13050	0,2
63	KF-13063	0,2
80	KF-13080	0,4
100	KF-13100	0,6
125	KF-13125	1,2
160	KF-13160	2,4
200	KF-13200	3,4

Zwischengelenk ISO MT4 mit Befestigungsstiften für Zylinder Serie K

(Zylinderdurchmesser 160/200 auf Zugstangen montiert)

6431 **VDMA** 24562

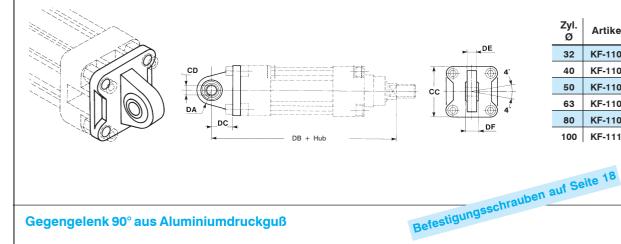

Zyl. Ø	Artikelnr.	Masse kg
32	KF-14032	0,13
40	KF-14040	0,24
50	KF-14050	0,32
63	KF-14063	0,61
80	KF-14080	0,93
100	KF-14100	1,6
125	KF-14125	2,2
160	KF-14160	4,3
200	KF-14200	7.5

 $\textbf{Anmerkung:} \ \text{die Abmessung XV} \ + \ 1\!\! / \!\! 2 \ \text{Hub gibt die Position des Gelenks in der Mittellinie zwischen den Zylinderk\"{o}pfen \ an. \\$

	Abmessungen Flansch ISO MF1-MF2													Abmessungen Fußbefestigung ISO MS1							
Zyl.	АВ	АН	АО	AT	AU	Е	s	Α	TR	х	Ά	EA	ЕВ	L1	R	TD	TL	тм	UW	х	(V
Ø	H13	JS15			±0,2		Nom.	Toll.	JS14	Nom.	Toll.	(max)	(min)			е9	h14	h14		Nom.	Toll.
32	7	32	6	4	24	45	142	±1,25	32	144	±1,25	82	64	22	0,5	12	12	50	65	73	±2
40	9*	36	8	4	28	52	161	±1,25	36	163	±1,25	93	72	22	0,5	16	16	63	75	82,5	±2
50	9*	45	10	5	32	64	170	±1,25	45	175	±1,25	101	79	22	1	16	16	75	95	90	±2
63	9*	50	12	5	32	74	185	±1,6	50	190	±1,6	107	88	28	1	20	20	90	105	97,5	±2
80	12	63	15	6	41	94	210	±1,6	63	215	±1,6	123	97	28	1	20	20	110	130	110	±2
100	14*	71	20	6	41	114	220	±1,6	75	230	±1,6	131	109	34	1	25	25	132	145	120	±2
125	16*	90	15	8	45	140	250	±2	90	270	±2	164	126	34	1,5	25	25	160	175	145	±2,5
160	18*	115	20	10	60	180	300	±2	115	320	±2	190	150	40	2,5	35	32	200	190	170	±2,5
200	22*	135	30	10	70	220	320	±2	135	345	±2	205	165	40	2,5	32	32	250	240	185	±2,5
												•			•						

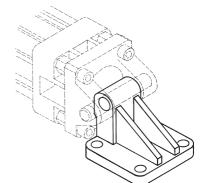
Zwischengelenk ISO MT4 mit Befestigungsstiften für Zylinder Serie KD

Abmessung Gelenk ISO MT4 für Serie KD

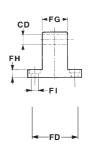

Zyl.	EA	EB	L1	R	TD	TL		UW	X	(V
Ø	(max)	(min)			(e9)	(h14)	(h14)		Nom.	Toll.
32	82	64	22	0,5	12	12	50	65	73	±2
40	93	72	22	0,5	16	16	63	75	82,5	±2
50	101	79	22	1	16	16	75	95	90	±2
63	107	88	28	1	20	20	90	105	97,5	±2
80	123	97	28	1	20	20	110	130	110	±2
100	131	109	34	1	25	25	132	145	120	±2
125	164	126	34	1,5	25	25	160	175	145	±2,5

Zyl. Ø	Artikelnr.	Masse Kg
32	KDF-14032	0,12
40	KDF-14040	0,24
50	KDF-14050	0,32
63	KDF-14063	0,47
80	KDF-14080	0,80
100	KDF-14100	1,50
125	KDF-14125	1,92

ANMERKUNG: der Wert XV + 1/2 Hub positioniert das Gelenk an der Mittellinie des Zylinder-Grundkörpers (von Zylinderkopf zu Zylinderkopf).

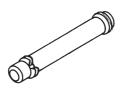

Für die Montage des Zwischengelenks der Durchmesser 160 - 200 spezifizieren Sie bitte den EB-Wert, da dieses Gelenk bei Lieferung normalerweise bereits auf dem Zylinder montiert ist.

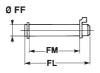
Gelenklager aus Aluminiumdruckguß



Zyl. Ø	Artikelnr.	Masse Kg
32	KF-11032S	0,1
40	KF-11040S	0,2
50	KF-11050S	0,3
63	KF-11063S	0,35
80	KF-11080S	1,6
100	KF-11100S	0,7

Gegengelenk 90° aus Aluminiumdruckguß





Zyl. Ø	Artikelnr.	Masse Kg
32	KF-19032	0,09
40	KF-19040	0,12
50	KF-19050	0,20
63	KF-19063	0,32
80	KF-19080	0,58
100	KF-19100	0,91

Bolzen aus verzinktem Stahl mit 2 Sicherungsringen

Zyl. Ø	Artikelnr.	Masse kg
32	KF-18032	0,03
40	KF-18040	0,05
50	KF-18050	0,05
63	KF-18063	0,12
80	KF-18080	0,15
100	KF-18100	0,29
125*	KF-18125	1,53
160*-200*	KF-18160	1

^{*} Bolzen für KF10...

	Ab	messu	ingen	Gelen	klager			Abmessungen Gegengelenk 90°									Abmessungen Bolzen		
Zyl. Ø	СС	CD H9	DA	DB	DC	DE	DF	CD H9	FA	FB	FC	FD	FE	FG	FH	FI	FF f8	FL	FM
32	48	10	15	142	14	10,5	14	10	32	10	1,2	32,5	49	26	10	6,4	10	53	46
40	54	12	18	160	16,5	12	16	12	36	12	2,6	38	55	28	10	6,4	12	61,3	53
50	65	12	20	170	17,5	12	16	12	45	12	0,3	46,5	67	32	12	8,4	12	69	61
63	75	16	21	190	21,5	15	21	16	50	16	3,3	56,5	73	40	12	8,4	16	80,5	71
80	95	16	27	210	24	15	21	16	63	16	1,0	72	97	50	14	10,5	16	100,5	91
100	115	20	29,5	230	28	18	25	20	73	20	2,5	89	115	60	16	10,5	20	122,5	111
125																	25	140	131
160																	30	205	171
200																	30	205	171

Kolbenstangenmutter aus verzinktem Stahl

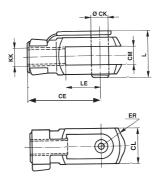
	1			
Zyl. Ø	ZM	KK	OR	Artikelnr.
32	M10 x 1,25	17	6	KF - 16032
40	M12 x 1,25	19	7	KF - 16040
50 ÷ 63	M16 x 1,5	24	8	KF - 16050
80 ÷ 100	M20 x 1,5	30	9	KF - 16080
125	M27 x 2	41	12	KF - 16125
160 ÷ 200	M36 x 2	55	14	KF - 16160

Schrauben zur Befestigung von Zylinderzubehör Serie KD-K-Z

Zylinderschraube
UNI 5931
Artikelnr. AZ4-VN.... geeignet für
Montageelemente KF-10..../KF-11..../
KF-11...S

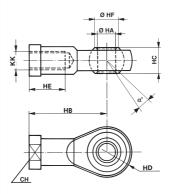
Zyl. Ø	Schraube	Artikelnr.
32-40	M6 x 18	AZ4-VN0618
50-63	M8 x 22	AZ4-VN0822
80-100	M10 x 25	AZ4-VN1025
125	M12 x 35	AZ4-VN1235

Zylinderschraube UNI 5931 e DIN 7984 Artikelnr. AZ4-VN..../AZ4-VPA... geeignet für Montageelemente KF-19...

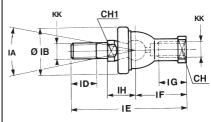

	yl. Ø	Schraube 2 Stck. pro Typ	Artikelnr.
33	-40	M6 x 14	AZ4-VN0614
	-40	M6 x 18	AZ4-VN0618
	-63	M8 x 16	AZ4-VPA0816
	-03	M8 x 22	AZ4-VPA0822
90	100	M10 x 20	AZ4-VPA1020
30.	80-100	M10 x 25	AZ4-VPA1025

Zylinderschraube UNI 5931 Artikelnr. AZ4-VN.... geeignet für Montageelemente KF-12.../ KF-13....

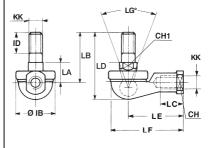
Zyl. Ø	Schraube	Artikelnr.
32-40	M6 x 14	AZ4-VN0614
50-63	M8 x 16	AZ4-VN0816
80-100	M10 x 20	AZ4-VN1020
125	M12 x 25	AZ4-VN1225



Gabelgelenk aus verzinktem Stahl für Kolbenstange nach ISO-Norm 8140 mit Bolzen


Zyl.	CE	СК	CL	CM B12	ER	KK	L	LE	Masse	Artikelnr.	
Ø				B12					kg	Artikeiiii.	
32	40	10	20	10	16	M10 x 1,25	26	20	0,09	KF - 15032	
40	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF - 15040	
50-63	64	16	32	16	25	M16 x 1,5	40	32	0,34	KF - 15050	
80-100	80	20	40	20	32	M20 x 1,5	50	40	0,67	KF - 15080	
125	110	30	55	30	45	M27 x 2	65	54	1,79	KF - 15125	
160-200	144	35	70	35	57	M36 x 2	81	72	3,87	KF - 15160	

Selbstschmierendes Gelenkgabelstück


	а	СН	KK	НА	НВ	нс	HD	HE	HF		
Zyl. Ø				Н7			0 -0,12			Masse kg	Artikelnr.
32	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032
40	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,11	KF - 17040
50-63	15°	22	M16 x 1,5	16	64	21	21	28	19,3	0,22	KF - 17050
80–100	14°	30	M20 x 1,5	20	77	25	25	33	24,3	0,4	KF - 17080

Gabelstück mit Gelenkzapfen

Zyl.	CH CH1		IA	KK	IH	IH ІВ		ΙE	IF	IG	Masse	Artikelnr.	
Ø	P	() ()	IA	KK	±0,3	Б	ID	ш	_	IG	kg	Artikellii.	
32	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025	
40	19	17	30°	M12 x 1,25	22	36	17	84	40	20	0,185	KF - 22040	
 50-63	22	19	22°	M16 x 1,5	27,5	47	23	112	50	27	0,36	KF - 22050	
80-100	30	24	15°	M20 x 1,5	31,5	58	25	133	63	38	0,57	KF - 22080	

Gabelstück mit Winkelgelenkzapfen

ZvI.	Zyl. Ø CH CH1			ı	ı	l .		LG							l	LA						Masse	
•			LG	KK	IB	ID	±0,3	LB	LC	LD	LE	LF	Masse kg	Artikelnr.									
32	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025									
40	19	17	50°	M12 x 1,25	36	17	19	42	27	57,5	50	66	0,165	KF - 23040									
50-63	22	19	40°	M16 x 1,5	47	23	23,5	60	33	79,5	64	84	0,33	KF - 23050									
80-100	30	24	32°	M20 x 1,5	58	25	27	68	40	90	77	99	0,54	KF - 23080									

Die Drehantriebe weisen besondere Konstruktionsmerkmale auf, durch die sie sich für die anspruchvollsten Anwendungen in allen Industriezweigen eignen.

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20 ÷ +80°C

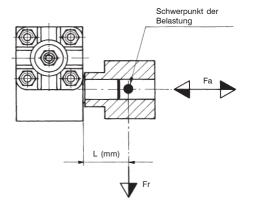
Medium: gefilterte Luft mit oder ohne Schmierung.

Zylinderrohr aus Aluminium innen und außen eloxiert 15 – 18 μ m.

Zahnspielrückgewinnung der Zahnstange. Kugellager für die Lagerung des Drehritzels.

Theoretischer Drehmoment bei 1 bar

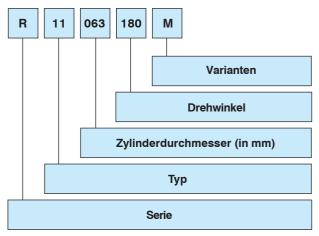
Der in der Tabelle angeführte Wert muß mit dem Betriebsdruck multipliziert werden.


Zyl. Ø	32	40	50	63	80	100	125
Mt (Nm)	1,2	2,25	3,9	7,3	15,7	26,5	51

Maximale von der Dämpfung absorbierbare kinetische Energie Die Einstellung des Drehwinkels reduziert die Dämpfungswirkung (R12 – R14)

Zyl. Ø	32	40	50	63	80	100	125	
E₀ (Nm)	1,8	2,5	4,5	8	12	21	36	

Magnetsensor Serie DH... (Abschnitt Zubehör Seite 2)


Max. statische Belastung auf Ritzel

Fa = max. axiale Belastung (N) bei Fr = 0

Zyl. Ø	32	40	50	63	80	100	125
Fa	100	100	120	120	200	250	300

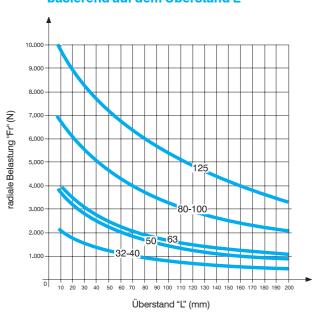
Typenschlüssel

TYP

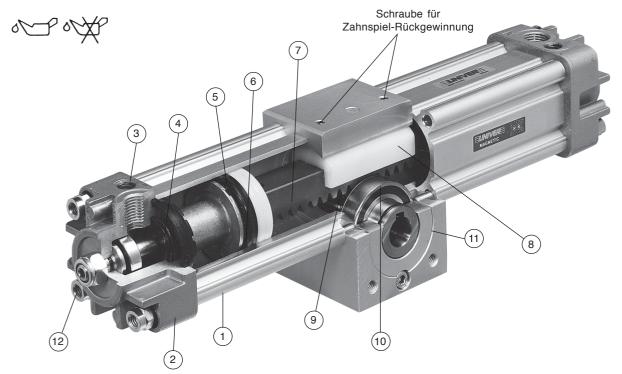
- 11 Ritzel ohne Drehwinkeleinstellung $\pm 3^{\circ}$
- 12 Ritzel mit Drehwinkeleinstellung ± 5°
- 13 Hohlwelle ohne Drehwinkeleinstellung ± 3°
- 14 Hohlwelle mit Drehwinkeleinstellung ± 5°

ZYLINDERDURCHMESSER

32 - 40 - 50 - 63 - 80 - 100 - 125 mm


DREHWINKEL

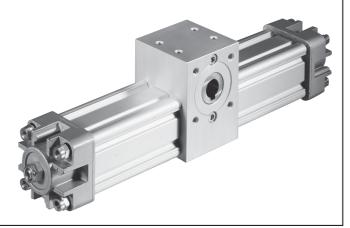
90° - 180° - 270° - 360°


VARIANTEN

M = Magnetversion

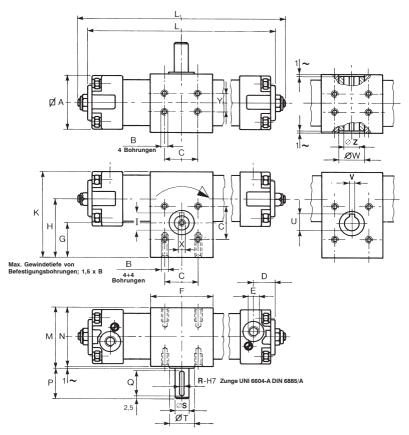
Fr = Max. radiale Belastung (N) bei Fa = 0 basierend auf dem Überstand L

Konstruktionseigenschaften


- Verdrehsicheres, gezogenes Profil aus Aluminiumlegierung, gerippt, ohne Stockungspunkte. Innen und außen eloxiert, 18 μm
- 2 Zylinderköpfe aus Aluminium-Druckgußlegierung, fest mit Zugstangen und Buchsen am Grundkörper befestigt
- 3 Einstellbare pneumatische Dämpfung; ermöglicht eine wirkungsvolle Dämpfung des Kolbens
- 4 Abdichtungen zwischen Zylinderköpfen und Zylinderrohr als elastischer Endanschlag
- (5) Gelenkiger Kolben aus Aluminiumruckgußlegierung und Führungsschlitten aus Azetalharz mit Permanentmagnetring aus Plastoferrit (auf Anfrage)
- (6) Kolben- und Dämpfungsdichtung aus verschleißfester Nitrilmischung für Betrieb mit oder ohne Schmierung. Die Doppellippenform erlaubt eine konstante Verschleißrückgewinnung
- (7) Zahnstange mit quadratischem Querschnitt aus genormtem Stahl, regulierbares System zur Zahnspielrückgewinnung
- 8 Führungsschlitten für die Zahnstange (mit System zur Zahnspielrückgewinnung)
- (9) Ritzel aus nitriertem Stahl
- (10) Kugellager für die Lagerung des Ritzels, für Ø 32 Kugellager aus Bronze-Teflon
- (11) Grundkörper aus eloxiertem Aluminium
- ① Drehwinkeleinstellungsschraube, mit Drehwinkel ±5° Serie R12-14. (Vermeiden Sie das Einstellen bei unter Druck stehendem Zylinder)

Drehantriebe mit:

Ritzel


Hohlwelle

Maximale Basisabmessungen

Zyl. Ø	А	В	C ±0,1	D	E	F	G	н	ı	K	М	N	Р	Q	R	S g 6	т	U	V M7	W	X	Υ ±0,1	Z H7
32	48	M6	33	18	G1/8	50	25	46,5	16	71,5	51	50	30	25	5	14	25	16,3	5	25	M5	18	14
40	54	M6	40	22	G1/4	60	30	54,5	16	82	61	60	30	25	5	14	25	16,3	5	25	M5	22	14
50	67	M8	50	22	G1/4	70	32,5	60,5	21,5	94	66	65	40	35	6	19	30	21,8	6	30	M6	25	19
63	78	M8	60	25,5	G3/8	75	37	70,8	27	110	76	75	40	35	8	24	30	21,8	6	30	M8	35	19
80	97	M10	80	27	G3/8	99	50	93,5	31	142	100	99	50	45	8	28	45	27,3	8	45	M8	50	24
100	115	M10	80	27,5	G1/2	115	54	99	41	156,5	116	115	50	45	10	38	50	31,3	8	50	M10	60	28
125	140	M12	90	31,5	G1/2	125	60	118	41	188	141	140	50	45	10	38	60	31,3	8	60	M10	70	28

Abmessungen L - L1 und Gewichte mit Standarddrehwinkel

- L₁: Zylinderabmessung mit Einstellung (R12-R14)
- L: Zylinderabmessung ohne Einstellung (R11-R13)

	Drehwinkel 90° Masse (kg) mit					Drehwinkel 180° Masse (kg) mit			Drehwinkel 270° Masse (kg) mit				Drehwinkel 360° Masse (kg) mit			
Zyl. Ø	L ₁	L	Ritzel	Hohlwelle	L ₁	L	Ritzel	Hohlwelle	L₁	L	Ritzel	Hohlwelle	L ₁	L	Ritzel	Hohlwelle
32	234	206	1,300	1,200	282	254	1,420	1,320	330	302	1,540	1,440	378	348	1,660	1,560
40	278	246	2,010	1,900	336	304	2,210	2,900	394	360	2,390	2,280	450	418	2,580	2,470
50	308	268	3,070	2,840	372	332	3,340	3,110	436	394	3,610	3,380	498	458	3,880	3,650
63	356	310	4,990	4,640	432	386	5,500	5,170	508	460	6,010	5,700	582	536	6,520	6,230
80	426	376	9,840	9,220	526	476	10,840	10,230	626	574	11,840	11,240	726	674	12,840	12,250
100	456	404	13,650	12,680	564	512	14,860	13,870	672	618	16,070	15,060	778	726	17,280	16,250
125	520	474	23,370	22,220	654	606	25,720	24,520	786	738	28,070	26,820	918	870	30,420	29,120

Maximale Abmessungen Zwischendrehwinkel

Die Zwischendrehwinkel erhält man, indem der Hub des rechten Kolbens der Version mit dem darüberliegenden Standarddrehwinkel vermindert wird.

Die Längenmaße L-L1 reduzieren sich bei jedem Drehungsgrad gemäß nachstehender Tabelle

Zylinder Ø	32	40	50	63	80	100	125
Reduzierung mm	0,262	0,315	0,350	0,415	0,550	0,594	0,733

Der linke Halbkörper behält die Standardmaße bei $\left(-\frac{L}{2}, \frac{L_1}{2}\right)$

Zylinder in kompakter Bauweise mit Durchmesser 32 ÷ 63 mm gemäß UNITOP Empfehlungen (Serien RP/RO) und ISO Bohrungsabständen (Serie RM/RN), lieferbar auch in verdrehsicherer Ausführung und mit verlängertem Kolben. Es handelt sich hier um das **erste Produkt mit einstellbarer pneumatischer Dämpfung, ohne Maßveränderungen im Vergleich zum selben ohne Dämpfung**, was eine beträchtlich höhere Geschwindigkeit erlaubt und den Geräuschpegel senkt.

TECHNISCHE DATEN

Auf Anfrage

- Flansch für Serie RP-RM Typ _00/_01/_20/_60/_70

- Magnetsensor Serie DF-... (Abschnitt Zubehör Seite 2)

- Drahtabdeckungsband für Magnetsensor Typ. DHF-002100.

- Hohle Kolbenstange nur für Ausführungen mit

durchgehender Kolbenstange

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20 ÷ +80°C

Betriebsmedium: Druckluft mit oder ohne Schmierung. Zylinderrohr aus Strangpreßprofil in Aluminiumlegierung mit Kolbenstange aus verchromtem Stahl.

Einstellbare Dämpfung (10 mm \sim).

Magnetausführung.

Die Version mit verdrehsicherer Kolbenstange (Serie RO...) ist serienmäßig mit Flansch ausgestattet.

Typenschlüssel

SERIE

Rundes Zylinderrohr

Serie RP - kompakt UNITOP RU - P/7 Ø 16÷63 mm Serie RM - kompakt ISO 21287 Ø 16÷63 mm

Achteckiges Zylinderrohr

Serie RO - kompakt UNITOP RU - P/7 Ø 16÷63 mm Serie RN - kompakt ISO 21287 Ø 16÷63 mm

TVI

- 1.. Kolbenstange mit Innengewinde aus rostfreiem Stahl Serie RP RO
- 2.. Kolbenstange mit Innengewinde aus verchromtem Stahl Serie RP RO
- -00 D.W.
- -01 D:W. durchgehende Kolbenstange
- -10 D.W. Kolbenstange mit Vorrichtung zur Verdreh sicherung (nur Serie RP)
- D.W. durchgehende Kolbenstange mit Vorrichtung zur Verdrehsicherung (nur Serie RP)
- -20 D.W. verlängerter Kolben (Ø 32÷63 mm)
- -60 E.W. eingefahrene Kolbenstange (nur Serie RP)
- -70 E.W. ausgefahrene Kolbenstange (nur Serie RP)
- 3. Kolbenstange mit Außengewinde aus rostfreiem Stahl Serie RM - RN
- 4.. Kolbenstange mit Außengewinde aus verchromtem Stahl Serie RM RN
- -00 D.W.
- -01 D.W. durchgehende Kolbenstange
- -20 D.W. verlängerter Kolben (Ø 32÷63 mm)
- -60 E.W. eingefahrene Kolbenstange (nur Série RM)
- -70 E.W. ausgefahrene Kolbenstange (nur Serie RM)

DURCHMESSER

016 - 020 - 025 - 032 - 040 - 050 - 063 mm

HUB

Einfachwirkend

0005-0010 mm (Ø 16÷25 mm) 0015-0020-0025 mm (Ø 32÷63 mm)

Doppelwirkend

0005-0010-0015-0020-0025-0030-0040-0050-0060-

Max. Standardhub

Ø 16	0040 mm
Ø 20-25	0050 mm
Ø 32-63	0080 mm

Max. Hub mit geführter Kolbenstange (auf Anfrage)

Ø 16	0100 mm
Ø 20-25	0200 mm
Ø 32-40	0400 mm
Ø 50-63	0500 mm

VARIANTE

- C = mit Flansch für Serie RP Versionen 200/201/260/270 und 100/101/160/170
- **H** = hohle Kolbenstange nur für Versionen mit durchge hender Kolbenstange ohne Flansch

Einige Konstruktionsmerkmale

- Zylinderköpfe aus Aluminiumdruckguß.
- Selbstschneidende Schrauben aus verzinktem Stahl.
- Kolbenstange aus verchromtem Stahl; auf Anfrage aus nichtrostendem Stahl.
- · Kolben aus Aluminium.
- · Gleitschuh aus Azetalharz.
- Kolbendichtungen aus Nitrilgummi.

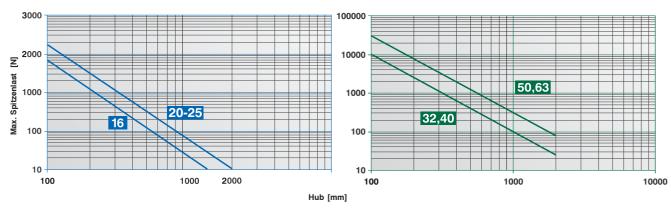
Nenntoleranz auf den Hub

Zyl. Ø	Toleranz mm			
16 ÷ 25	+ 1,5/0			
32 ÷ 50	+ 2/0			
63	+ 2,5/0			

Kolben aus Aluminium doppelwirkend

- Kolbenstangendichtungen aus Polyurethan.
- Einstellbare pneumatische Dämpfung zum wirkungsvollen Abbremsen des Kolbens und zur Reduzierung des Geräuschpegels.

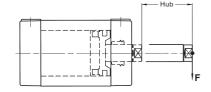
 Verlängerter Kolben doppelwirkend für größere radiale Belastungen (Ø 32 ÷ 63 mm)

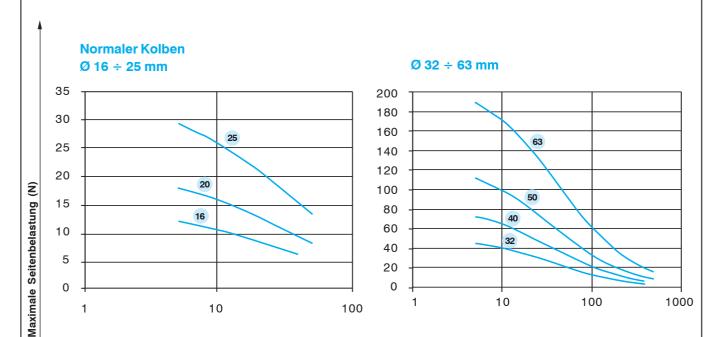

Theoretische Kräfte [N], die sich bei dem jeweiligen Betriebsdruck [bar] entwickeln

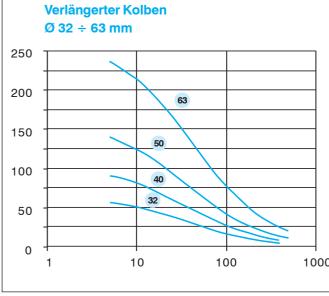
Max. Drehmoment [Nm] für verdrehsichere Kolbenstange Serie RO/RN

Zyl.	Nutzfläche [mm²] Betriebsdruck [bar]								Moment
Ø			2	4	6	8	10	Zyl. Ø	[Nm]
16	Schubkraft Zugkraft	201 151	40 30	80 60	121 91	161 121	201 151	16	0,5
20	Schubkraft Zugkraft	314 236	63 47	126 94	188 142	251 189	314 236	20	0,8
25	Schubkraft Zugkraft	491 412	98 82	196 165	295 247	393 330	491 412	25	1
32	Schubkraft Zugkraft	804 691	161 138	322 276	482 414	643 553	804 691	32	2
40	Schubkraft Zugkraft	1256 1143	251 228	502 457	754 685	1005 914	1256 1143	40	3
50	Schubkraft Zugkraft	1962 1762	393 352	785 704	1178 1057	1570 1409	1963 1762	50	5
63	Schubkraft Zugkraft	3116 2916	623 583	1246 1166	1869 1749	2493 2332	3116 2916	63	8

Für Druckluftzylinder mit durchgehender Kolbenstange hat die theoretische Kraft in beiden Richtungen immer denselben Wert wie den unter "Zugkraft" in der Tabelle angegebenen.

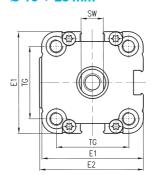

In der Praxis müssen diese Werte jedoch reduziert werden, da Gewicht und Gleitreibung des beweglichen Teils (\sim -10%) zu berücksichtigen sind.



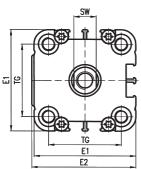

Theoretische Zugkräfte der Feder für Zylinder der Serie ___260___/__270___

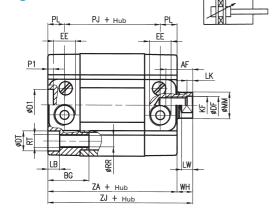
Zyl. Ø	Max. Kraft (N)	Min. Kraft (N)	Max. Hub (mm)	Abnahme pro mm Hub (N/mm)
16	14	11,8	10	0,22
20	23,5	20	10	0,35
25	23,5	20	10	0,35
32	40	24	25	0,64
40	50	35	25	0,6
50	90	49	25	1,64
63	90	49	25	1,64

Kurve der Querbelastung auf die Kolbenstange



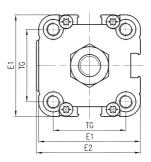
1000 Hub (mm)



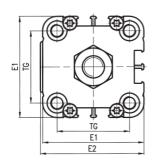

Doppelwirkender Zylinder Serie RP 200..../ Serie RP 220....* verlängerter Kolben

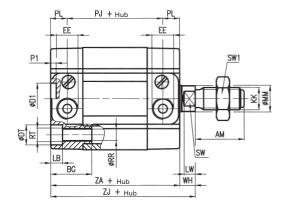
Ø 16 ÷ 25 mm

Masse RP 200...


Zyl.	Zyl.	Zunahme	Bewegl. Teil	Zunahme
Ø	Hub "0" (g)	pro mm Hub (g)	Hub "0" (g)	pro mm Hub (g)
16	103	1,05	15,5	0,39
20	135	1,45	24,5	0,62
25	203	1,65	34,5	0,62

Masse RP 200.../RP 220...


Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	205/291,5	2,65	60/115,5	0,9
40	305/426	3,3	75/148	0,9
50	450/676,5	4,7	125/274	1,6
63	735/1063,5	5,65	200/427	1,6


Doppelwirkender Zylinder Kolbenstange mit Außengewinde Serie RP 400..../ Serie RP 420....* verlängerter Kolben

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

Masse RM 400...

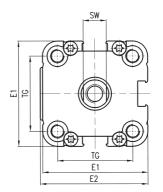
Zyl. Ø	Zyl Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	115	1,05	27,5	0,39
20	157	1,45	46,5	0,62
25	225	1,65	56,5	0,62

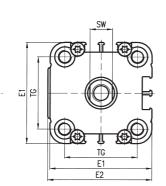
Masse RM 400.../RM 420...

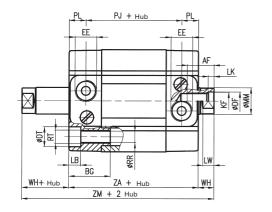
Zyl.	Zyl	Zunahme	Bewegl. Teil	Zunahme
Ø	Hub "0" (g)	pro mm Hub (g)	Hub "0" (g)	pro mm Hub (g)
32	240/326,5	2,65	95/146,5	0,9
40	340/461	3,3	110/183	0,9
50	505/731,5	4,7	180/329	1,6
63	790/1198,5	5,65	255/482	1,6

Zyl. Ø	AF	АМ	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	WH	ZA	ZJ
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37	42
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M8x1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37	43
25	10	16	16	2	6,1	8	37	39	M5	M6	M8x1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39	45
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	7	44	51
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42	7	45	52
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45	53
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	34	7,5	6,5	M8	13	19	62	8	49	57

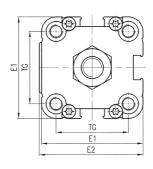
^{*} Für die Zylindertypen mit verlängertem Kolben nehmen die Maße PJ, ZA und ZJ um 20 mm (Ø 32-40 mm) und um 25 mm (Ø 50-63 mm) zu.

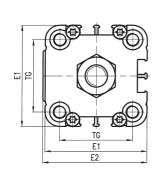


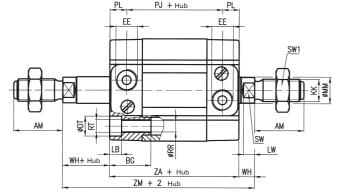

Doppelwirkender Zylinder, durchgehende Kolbenstange Serie RP 201---


Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm






Doppelwirkender Zylinder, durchgehende Kolbenstange mit Außengewinde Serie RP 401....

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

Serie RP 201...

Für die Version mit durchgehender hohler Kolbenstange Variante H im Typenschlüssel

Zyl.	Foro
Ø	mm
16	3,2
20-25	3,8
32-40	4,5
50-63	6

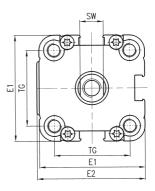
Masse RP 201...

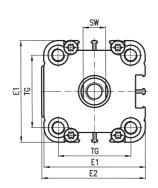
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	105	1,45	17,5	0,78
20	138	2,07	24,8	1,24
25	206	2,27	34,8	1,24
32	230	3,55	85	1,8
40	325	4,2	100	1,8
50	490	6,3	165	3,2
63	775	7,25	245	3,2

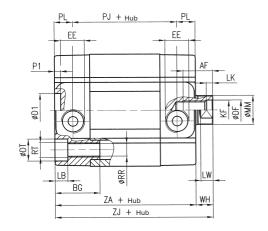
Masse RM 401...

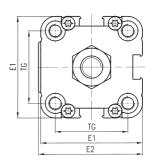
	Masse HW 401										
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)							
16	129	1,45	41,5	0,78							
20	182	2,07	68,8	1,24							
25	250	2,27	78,8	1,24							
32	290	3,55	125	1,8							
40	390	4,2	140	1,8							
50	570	6,3	225	3,2							
63	855	7,25	300	3,2							

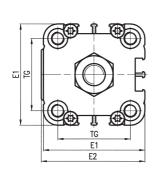
Zyl. Ø	AF	АМ	ВG	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø MM	PJ	PL	Ø RR	RT	sw	SW1	TG	WH	ZA	ZM
16	8	12	16	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	21	8	3,2	M4	7	10	18	5	37	47
20	10	16	16	4,1	7,3	32	34	M5	M6	M8X1,25	4,2	1	4,5	10	21	8	4,2	M5	8	13	22	6	37	49
25	10	16	16	4,1	8	37	39	M5	M6	M8X1,25	4,5	1	4,5	10	23	8	4,2	M5	8	13	26	6	39	51
32	12	19	18	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	29	7,5	5,2	M6	10	17	32,5	7	44	58
40	12	19	18	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	30	7,5	5,2	M6	10	17	42_	7	45	59
50	16	22	24	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	30	7,5	6,6	M8	13	19	50	8	45	61
63	16	22	24	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	35	7,5	6,6	M8	13	19	62_	8	50	66

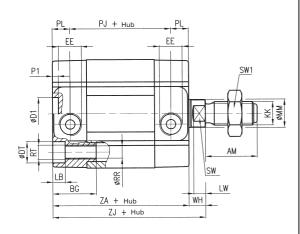



Einfachwirkender Zylinder, Kolbenstange eingefahren Serie RP 260


Ø 16 ÷ 25 mm






Einfachwirkender Zylinder, Kolbenstange mit Außengewinde eingefahren Serie RP 460 ...

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

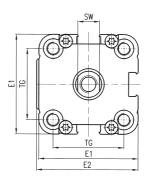
Masse	RP	260	

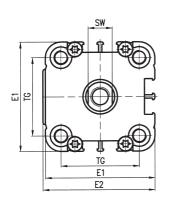
Zyl. Zyl. Zunahme pro mm Hub (g) Bewegl. Teil Hub pro mm Hub (g) Zunahme pro mm Hub (g) 16 103 1,05 15,5 0,39 20 135 1,45 24,5 0,62 25 203 1,65 34,5 0,62 32 215 2,65 63 0,9 40 315 3,3 81 0,9 50 468 4,7 137 1,6 63 753 5,65 212 1,6			macco iii		
20 135 1,45 24,5 0,62 25 203 1,65 34,5 0,62 32 215 2,65 63 0,9 40 315 3,3 81 0,9 50 468 4,7 137 1,6		Hub "0"	pro mm	Hub	pro mm
25 203 1,65 34,5 0,62 32 215 2,65 63 0,9 40 315 3,3 81 0,9 50 468 4,7 137 1,6	16	103	1,05	15,5	0,39
32 215 2,65 63 0,9 40 315 3,3 81 0,9 50 468 4,7 137 1,6	20	135	1,45	24,5	0,62
40 315 3,3 81 0,9 50 468 4,7 137 1,6	25	203	1,65	34,5	0,62
50 468 4,7 137 1,6	32	215	2,65	63	0,9
	40	315	3,3	81	0,9
63 753 5.65 212 1.6	50	468	4,7	137	1,6
00 700 0,00 212 1,0	63	753	5,65	212	1,6

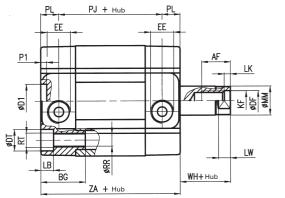
Masse RM 460...

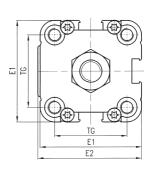
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	115	1,05	27,5	0,39
20	157	1,45	46,5	0,62
25	225	1,65	56,5	0,62
32	250	2,65	98	0,9
40	350	3,3	116	0,9
50	523	4,7	192	1,6
63	808	5,65	267	1,6

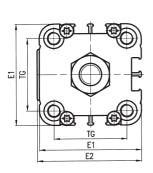
Zyl. Ø	AF	АМ	ВG	Ø D1 D11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø M M	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	WH	ZA	ZJ
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37	42
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M8X1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37	43
25	10	16	16	2	6,1	8	37	39	M5	M6	M8X1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39	45
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	7	44	51
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42_	7	45	52
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45	53
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	35	7,5	6,5	M8	13	19	62	8	50	58

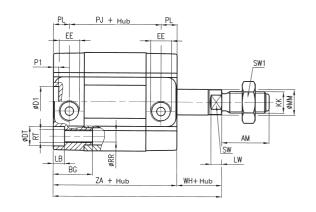



Einfachwirkender Zylinder, Kolbenstange ausgefahren Serie RP 270


Ø 16 ÷ 25 mm






Einfachwirkender Zylinder, Kolbenstange mit Außengewinde ausgefahren Serie RP 470

Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm

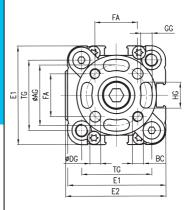
Masse	RP	270	

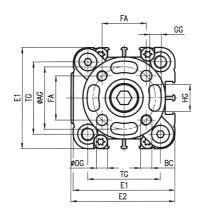
Wasse RP 270											
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)							
16	103	1,05	15,5	0,39							
20	135	1,45	24,5	0,62							
25	203	1,65	34,5	0,62							
32	203	2,65	63	0,9							
40	302	3,3	81	0,9							
50	445	4,7	137	1,6							
63	730	5,65	212	1,6							

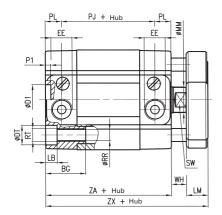
Masse RM 470...

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	115	1,05	27,5	0,39
20	157	1,45	46,5	0,62
25	225	1,65	56,5	0,62
32	238	2,65	98	0,9
40	337	3,3	116	0,9
50	500	4,7	192	1,6
63	785	5,65	267	1,6

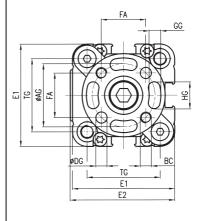
Zyl. Ø	AF	АМ	ВG	Ø D1 D11	Ø DF	Ø DT	E1	E2	EE	KF	кк	LB	LK	LW	Ø M M	P1	PJ	PL	Ø RR	RT	sw	SW1	тg	WH	ZA
16	8	12	16	2	4,1	5,8	28	30	M5	M4	M6X1	3,2	1	4,5	8	2	21	8	3,2	M4	7	10	18	5	37
20	10	16	16	2	6,1	7,3	32	34	M5	M6	M8X1,25	4,2	1	4,5	10	2	21	8	4,2	M5	8	13	22	6	37
25	10	16	16	2	6,1	8	37	39	M5	M6	M8X1,25	4,5	1	4,5	10	2	23	8	4,2	M5	8	13	26	6	39
32	12	19	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	7	44
40	12	19	18	14	8,2	9	56	57	G1/8	M8	M10x1,25	5,3	2	5	12	2,5	30	7,5	5,2	M6	10	17	42_	7	45
50	16	22	24	18	10,2	11	66	67	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	30	7,5	6,5	M8	13	19	50	8	45
63	16	22	24	18	10,2	11	79	80	G1/8	M10	M12x1,25	6,5	2	6	16	2,5	35	7,5	6,5	M8	13	19	62_	8	50

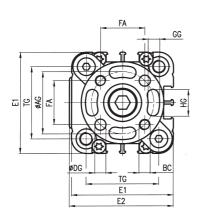


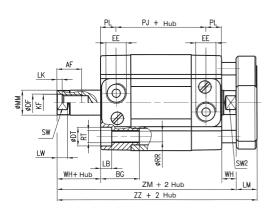

Doppelwirkender Zylinder mit Vorrichtung für Verdrehsicherung Serie RP 210 ...


Ø 16 ÷ 25 mm

Ø 32 ÷ 63 mm






Doppelwirkender Zylinder, durchgehende Kolbenstange mit Vorrichtung für Verdrehsicherung Serie RP 211

Ø 16 ÷ 25 mm

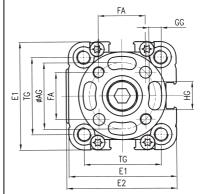
Ø 32 ÷ 63 mm

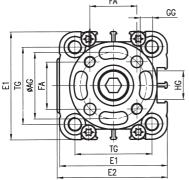
		Masse RP	210	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	122	1,25	34,5	0,59
20	165	1,75	54,5	0,93
25	240	1,95	71,5	0,93
32	245	3,09	100	1,34
40	372	4,1	142	1,7
50	545	5,5	220	2,4
63	875	6,89	340	2,84

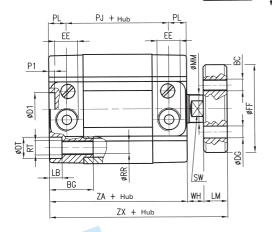
Masse RP 211...

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	124	1,64	36,7	0,98
20	168	2,37	57,5	1,55
25	243	2,57	74,5	1,55
32	270	3,99	125	2,24
40	392	5	167	2,6
50	585	7,1	260	4
63	915	8,49	385	4,44

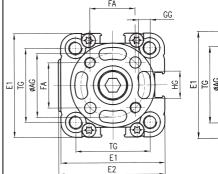
Zyl. Ø	AF	AG	вс	BG	Ø D1 D11		Ø DG	Ø DT	E1	E2	EE	FA	GG	HG	KF	LB	LM	LK	LW	Ø MM	P1	PJ	PL	RR	RT	SW	SW2	TG	WH	ZA	ZM	ZX	ZZ
16	8	14	МЗ	16	2	4,1	3	5,8	28	30	M5	9,9	3	5	M4	3,2	6	1	4,5	8	2	21	8	3,2	M4	7	-	18	5	37	47	48	53
20	10	17	M4	16	2	6,1	4	7,3	32	34	M5	12	4	7	M6	4,2	8	1	4,5	10	2	21	8	4,2	М5	8	-	22	6	37	49	51	57
25	10	22	М5	16	2	6,1	5	8	37	39	M5	15,6	5	9	M6	4,5	8	1	4,5	10	2	23	8	4,2	М5	8	-	26	6	39	51	53	59
32	12	28	М5	18	14	8,2	5	9	46	47	G1/8	19.8	5,2	11	M8	5,3	10	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	7	44	58	61	68
40	12	33	М5	18	14	8,2	5	9	56	57	G1/8	23,3	5,2	15	M8	5,3	10	2	5	12	2,5	30	7,5	5,2	М6	10	19	42	7	45	59	62	69
50	16	42	M6	24	18	10,2	6	11	66	67	G1/8	29,7	6,2	19	M10	6,5	12	2	6	16	2,5	30	7,5	6,6	M8	13	24	50	8	45	61	65	73
63	16	50	М6	24	18	10,2	6	11	79	80	G1/8	35,4	6,2	25	M10	6,5	12	2	6	16	2,5	35	7,5	6,6	M8	13	24	62	8	50	66	70	78

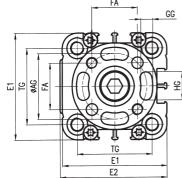


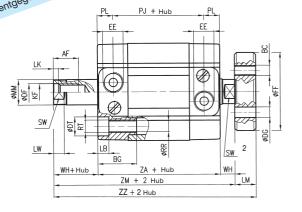




Doppelwirkender Zylinder mit durchgehender verdrehsicherer Kolbenstange Serie RO 201___


÷ 25 mm


Sollte es sich als nötig erweisen,
Sollte es sich als nötig erweisen,
den Flansch von der Kolbenstange
den Flansch von der Losschraubkraft
zu lösen, darf der Losschraubung
zu lösen, der der Losschlüssels SW2
ausschließlich unter Verwendung
des Sechskantschlüssels SW2
des Sechskantschlüssels SW2
entgegengewirkt werden.



Ø 16 ÷ 25 mm

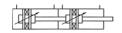
Ø 32 ÷ 63 mm

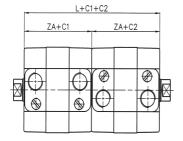
Masse RO 200.../RO 220.

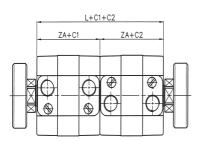
	ivias	se RO 200.	/RO 220	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	110	1,05	22,5	0,39
20	150	1,45	38,5	0,62
25	225	1,65	54,5	0,62
32	229/316,5	2,65	84/136,5	0,9
40	344/466	3,3	113,5/188	0,9
50	517/746,5	4,7	192/344	1,6
63	829/1161.5	5.65	294/525	1.6

Masse RO 201...

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
16	112	1,45	24,5	0,78
20	153	2,07	39	1,24
25	228	2,27	55	1,24
32	254	3,55	109	1,8
40	364	4,2	138,5	1,8
50	557	6,3	232	3,2
63	869	7,25	339	3,2


Zyl. Ø	AF	AG	вс	BG	Ø D1 D11	Ø DF	Ø DG	Ø DT	E1	E2	EE	FA	Ø FF	GG	HG	KF	LB	LM	LK	LW	Ø MM	P1	PJ	PL	RR	RT	SW	SW2	TG	WH	ZA	ZM	ZX	ZZ
16	8	14	МЗ	16	2	4,1	3	5,8	28	30	M5	9,9	19	3	5	M4	3,2	6	1	4,5	8	2	21	8	3,2	M4	7	-	18	5	37	47	48	53
20	10	17	M4	16	2	6,1	4	7,3	32	34	M5	12	24	4	7	M6	4,2	8	1	4,5	10	2	21	8	4,2	М5	8	-	22	6	37	49	51	57
25	10	22	М5	16	2	6,1	5	8	37	39	M5	15,6	30	5	9	M6	4,5	8	1	4,5	10	2	23	8	4,2	М5	8	-	26	6	39	51	53	59
32	12	28	М5	18	14	8,2	5	9	46	47	G1/8	19.8	37	5,2	11	M8	5,3	10	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	7	44	58	61	61
40	12	33	М5	18	14	8,2	5	9	56	57	G1/8	23,3	42	5,2	15	M8	5,3	10	2	5	12	2,5	30	7,5	5,2	М6	10	19	42	7	45	59	62	62
50	16	42	М6	24	18	10,2	6	11	66	67	G1/8	29,7	52	6,2	19	M10	6,5	12	2	6	16	2,5	30	7,5	6,6	M8	13	24	50	8	45	61	65	65
63	16	50	М6	24	18	10,2	6	11	79	80	G1/8	35,4	64	6,2	25	M10	6,5	12	2	6	16	2,5	35	7,5	6,6	М8	13	24	62	8	50	68	70	70


^{*} Für die Zylindertypen mit verlängertem Kolben nehmen die Maße PJ, ZA und ZJ um 20 mm (Ø 32-40 mm) und um 25 mm (Ø 50-63 mm) zu.



Tandemzylinder (Doppelte Schubund Zugkraft)


Zyl. Ø*	ZA	L
16	37	74
20	37	74
25	39	78
32	44	88
40	45	90
50	45	90
63	50	100

Typenschlüssel

SERIE

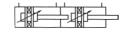
RP runder Tandemzylinder
RO achteckiger Tandemzylinder

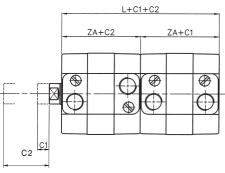
TYP

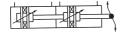
Nichtrostende Kolbenstange

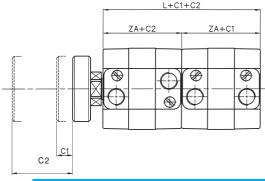
- 1A Kolbenstange mit Innengewinde
- 3A Kolbenstange mit Außengewinde

Verchromte Kolbenstange

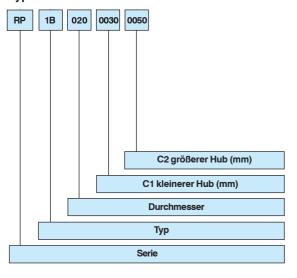

- 2A Kolbenstange mit Innengewinde
- 4A Kolbenstange mit Außengewinde


DURCHMESSER


016-020-025-032-040-050-063 mm


Zylinder mit unabhängigen Kolbenstangen (Mehrstellungszylinder)

Zyl. Ø*	ZA	L
16	37	74
20	37	74
25	39	78
32	44	88
40	45	90
50	45	90
63	50	100



Typenschlüssel

SERIE

- RP runder Zylinder mit unabhängigen Kolbenstangen
- RO achteckiger Zylinder mit unabhängigen Kolbenstangen

TYP

Nichtrostende Kolbenstange

- 1B Kolbenstange mit Innengewinde
- 3B Kolbenstange mit Außengewinde

Verchromte Kolbenstange

- 2B Kolbenstange mit Innengewinde
- 4B Kolbenstange mit Außengewinde

DURCHMESSER

016-020-025-032-040-050-063 mm

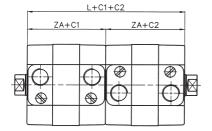
HUB C1

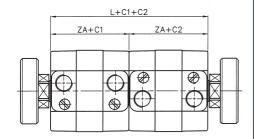
Hub Zylinder hinten

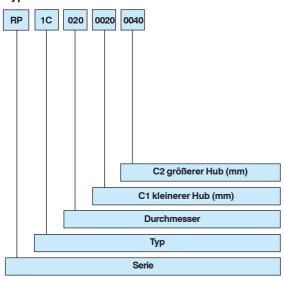
HUB C2

Hub Zylinder vorn

* Was die anderen Maße anbelangt, finden Sie selbige unter den Standardversionen auf Seiten 26 und 31.




Gegenübergestellter Zylinder



Zyl. ø*	ZA	L
16	37	74
20	37	74
25	39	78
32	44	88
40	45	90
50	45	90
63	50	100

Typenschlüssel

SERIE

- **RP** Runder Zylinder mit gegenübergestellten Kolbenstangen
- RO Achteckiger Zylinder mit gegenübergestellten Kolbenstangen

TYP

Nichtrostande Kolbenstange

- 1C Kolbenstange mit Innengewinde
- **3C** Kolbenstange mit Außengewinde

Verchromte Kolbenstange

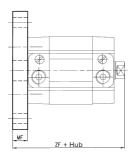
- 2C Kolbenstange mit Innengewinde
- 4C Kolbenstange mit Außengewinde

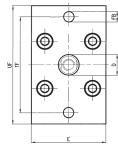
DURCHMESSER

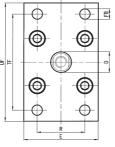
016-020-025-032-040-050-063 mm

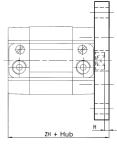
HUB C1

Hub Zylinder hinten

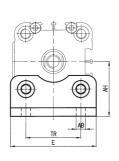

HUB C2

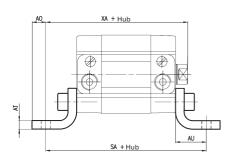

Hub Zylinder vorn


* Was die anderen Maße anbelangt, finden Sie selbige unter den Standardversionen auf Seiten 26 und 31.



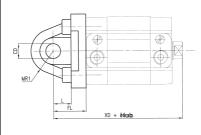
Vorderer oder hinterer Flansch aus verzinktem Stahl

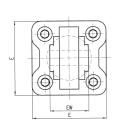




Zyl.	Artikelnr. /	Masse pro
Ø	Unitop RU-P/7/Kg	ISO 21287/Kg
16	RPF-1201	6 /0,10
20	RPF-1202	0 /0,16
25	RPF-1202	5/0,20
32	RPF-12032/0,26	KF-12032 /0,20
40	RPF-12040/0,42	KF-12040 /0,25
50	RPF-12050/0,60	KF-12050 /0,50
63	RPF-12063/1,20	KF-12063 /0,65

Winkel-Fußbefestigung aus verzinktem Stahl

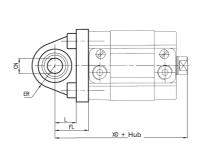



Befestigungsschrau	ben	siehe Seite 3	6
Beig	Zyl.	Artikelnr. / I	Masse pro
	Ø	Unitop RU-P/7/Kg	
	16	RPF-1301	6 /0,02
	20	RPF-1302	0/0,03
	25	RPF-1302	5 /0,04
	32	RPF-13032/0,07	KF-13032 /0,07
	40	RPF-13040/0,10	KF-13040 /0,10
	50	RPF-13050 /0,15	KF-13050 /0,15
	63	RPF-13063/0,25	KF-13063 /0,25

					Fla	ınsch	ı							F	ußbefe	stigung			
Zyl. Ø	Ø D H11	E	Ø FB H13	н	MF	R Js14	TF Js14	UF	ZF	ZH	Ø AB H13	Ø AN Js15	ΑО	ΑТ	ΑU	Е	SA	TR	XA
16	10	29	5,5	5	10	-	43	55	52	47	5,5	22	4,5	3	13	30	63	18	55
20	12	36	6,6	4	10	-	55	70	53	47	6,6	27	6	4	16	36	69	22	59
25	12	40	6,6	4	10	-	60	76	55	49	6,6	30	6	4	16	40	71	26	61
32	14/30	50/45	7	3	10	32	65/64	80	61	54	6.6/7	32.25/32	8/6	5/4	18/24	50/45	80/92	32	69/75
40	14/35	60/52	9	3	10	36	82/72	102/90	62	55	6.6/9	42.5/36	8	5/4	20/28	60/52	85/101	42/36	72/80
50	18/40	68/65	9	4	12	45	90	110	65	57	9	47/45	8/10	6/5	24/32	68/64	93/109	50/45	77/85
63	18/45	87/75	9	7/4	15/12	50	110/100	130/120	73/70	65/63	9	59.5/ 50	12	6/5	27/32	84/74	104/114	62/50	85/93

Die Abmessungen in blau beziehen sich auf die Serie ISO 21287

Hinterer Gelenklagerbock aus Aluminiumdruckguss, ISO MP4 ohne Bolzen

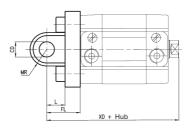


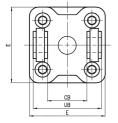


				Ar	tike	Inr. /	Ma	sse pro	
Zyl. Ø	Ø CD H7	E ±0,5	EW h14	FL ±0,2	L	MR1	XD	Unitop RU-P/7/Kg	ISO 21287/Kg
16	6	27	12	16	10	6	58	RPF-110	16 /0,017
20	8	34	16	20	14	8	63	RPF-110	20 /0,021
25	8	38	16	20	14	8	65	RPF-110	25 /0,027
32	10	48	26	22	12	15	73	RPF-110	32 /0,080
40	12	54	28	25	15	18	77	-	KF-11040 /0,100
50	12	65	32	27	15	20	80	-	KF-11050 /0,170
63	16	75	40	32	20	23	89	-	KF-11063/0.250

• Wenn man den Bolzen entfernt, kann der Gelenklagerbock auch vorne verwendet werden.

Hinterer Gelenklagerbock aus Aluminiumdruckguss, ISO MP4 ohne Bolzen

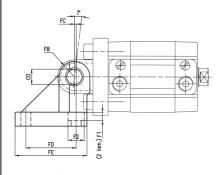


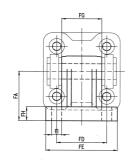


Zyl. Ø	CN H9	Е	EN	ER	EU	FL	L	XD	Unitop RU-P/7/Kg ISO 21287/Kg
32	10	48	14	15	10,5	22	14	73	KF-11032S/ 0,10
40	12	54	16	18	12	25	16,5	77	KF-10040S/ 0,20
50	12	65	16	20	12	27	17,5	80	KF-10050S/ 0,30
63	16	75	21	21	15	32	21,5	90	KF-10063S/ 0,35

Hinterer Gelenklagerbock aus Druckgußaluminium mit Bolzen aus verzinktem Stahl

Artikelnr. / Masse pro...

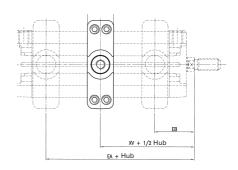

Zyl. Ø	CB H14	C H9	E	FL ±0,2	L	MR	UB h14	XD	Unitop RU-P/7/Kg
32	26	10	48	22	12	11	45	73	KF-10032A/0,060
40	28	12	58	25	16	12,5	52	77	RPF-10040/0,104
50	32	12	66	27	16	12,5	60	80	RPF-10050/0,142
63	40	16	83	32	21	15	70	90	RPF-10063/0,240

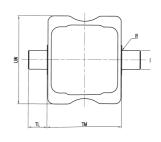

Artikelnr. / Masse pro...

Zyl Ø	CB H14	C H9	Ε	FL ±0,2	L	MR	UB h14	XD	ISO 21287/Kg
32	26	10	48	22	12	11	45	73	KF-10032A /0,10
40	28	12	58	25	15	13	52	77	KF-10040A /0,20
50	32	12	66	27	15	13	60	80	KF-10050A /0,30
63	40	16	83	32	20	17	70	90	KF-10063A/0,35

• Wenn man den Bolzen entfernt, kann der Gelenklagerbock auch vorne verwendet werden.

Gegengelenk 90° aus Aluminiumdruckguß



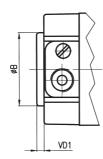


	Zyl. Ø	Ø CD H9	FA Js15	FB	FC	FD	FE	FG -0.2/-0.6	FH	FI	F1	F2
	32	10	32	10	1,2	32,5	46,5	26	9	6,4	5,5	10,5
	40	12	36	12	2,6	38	51,5	28	9	6,4	5,5	10,5
j	50	12	45	12	0,3	46,5	63,5	32	9	8,4	5	13,5
	63	16	50	16	3,3	56,5	73,5	40	10,5	8,4	5	13,5

Zyl. Ø	Artikelnr	Masse Kg
32	KF-19032	0,09
40	KF-19040	0,12
50	KF-19050	0,20
63	KF-19063	0,32

Zwischengelenk mit Befestigungsstiften

	Zyl.	EA	EB	l1	R	TD	TL	TM	UW	X	
_	Ø	(max)	(min)	(max)	(max)	(e9)	(h14)	(h14)	(max)	Nom.	Toll.
	32	24	34	22	0,5	12	12	50	65	29	±2
	40	25	34	22	0,5	16	16	63	75	29,5	±2
	50	26	35	22	1	16	16	75	95	30,5	±2
	63	27	38	28	1	20	20	90	105	32,5	±2


Zyl. Ø	Artikelnr	Masse Kg
32	KDF-14032	0,13
40	RPF-14040	0,24
50	RPF-14050	0,32
63	RPF-14063	0,47

Mindestzylinderhub: 10 mm

XV + ½ Hub: Gelenk in der Mittellinie zwischen den Zylinderköpfen

Adapterring für hintere ISO Zentrierung (auf Anfrage)

Artikelnr	erring	Adapt	Zyl.
Altikellii	VD1	ØB	Ø
RSF-0903	3	30	32
RSF-0904	3	35	40
RSF-0905	3	40	50
RSF-0906	3	45	63

Flansch für Kolbenstange mit Innengewinde aus Druckgußaluminium (einschließlich Schraube für Montage an achteckigen Zylindertypen Serie RO-RN) Flansch für Kolbenstange mit Vorrichtung für Verdrehsicherung aus Aluminiumdruckguß für Serie RP 210...-RP 211... (einschließlich Befestigungsschrauben)

Zyl. Ø	Artikelnr.	Masse kg
16	RPF-28016	0,007
20	RPF-28020	0,018
25	RPF-28025	0,020
32	RPF-28032	0,024
40	RPF-28040	0,035
50	RPF-28050	0,057
63	RPF-28063	0,094

Zyl. Ø	Artikelnr.	Masse kg
16	RPF-29016	0,010
20	RPF-29020	0,018
25	RPF-29025	0,025
32	RPF-29032	0,026
40	RPF-29040	0,036
50	RPF-29050	0,065
63	RPF-29063	0,100

Kolbenstangenmutter aus verzinktem Stahl

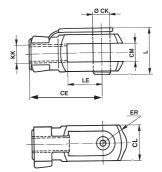
Zyl. Ø	ZM	KK	OR	Artikelnr.
16	M6 x 1	10	4	MF-16012
20-25	M8 x 1,25	13	5	MF-16020
32-40	M10 x 1,25	17	6	KF-16032
50-63	M12 x 1,25	19	7	KF-16040

Bolzen aus verzinktem Stahl mit 2 Sicherungsringen

Zyl. Ø	FF f8	FL	FM	Masse kg	Artikelnr.
32	10	53	46	0,03	KF-18032
40	12	61,3	53	0,05	KF-18040
50	12	69	61	0,05	KF-18050
63	16	80,5	71	0,12	KF-18063

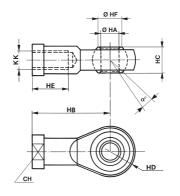
Befestigungsschrauben Zubehör

Zylinderschraube UNI 5931 Artikelnr. AZ4-VN.... geeignet für Montageelemente Serie RPF-12... und RPF-13....

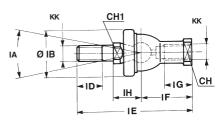

	Zyl. Ø	Schraube	Artikelnr.
	16	M4 x 18	AZ4-VN0418
	20-25	M5 x 18	AZ4-VN0518
	32-40	M6 x 20	AZ4-VN0620
•	50-63	M8 x 25	AZ4-VN0825

Zylinderschraube UNI 5931 Artikelnr. AZ4-VN.... geeignet für Montageelemente KR-10032/RPF-10....

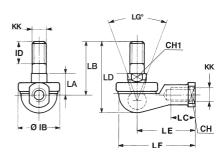
Zyl. Ø	Schraube	Artikelnr.
32-40	M6 x 25	AZ4-VN0625
50-63	M8 x 30	AZ4-VN0830



Doppeltes Gelenk aus verzinktem Stahl für Kolbenstange gemäß ISO 8140 einschließlich Bolzen


Zyl.	CE	СК	CL	СМ	ER	KK	L	LE	Masse	Artikelnr.	
Ø				B12					kg		
16	24	6	12	6	7	M6 x 1	16	12	0,019	MF-15016	
20÷25	32	8	16	8	10	M8 x 1,25	22	16	0,046	MF-15020	
32-40	40	10	20	10	16	M10 x 1,25	26	20	0,090	KF-15032	
50-63	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF-15040	

Selbstschmierendes Gelenkgabelstück aus verzinktem Stahl


	Zyl.	а	СН	KK	НА	НВ	НС	HD	HE	HF		l	
ø			(C)		H7			0 -0,12			Masse kg	Artikelnr	
	16	13°	11	M6 x 1	6	30	9	10	12	9	0,026	MF-17012	
	20÷25	13°	14	M8 x 1,25	8	36	12	12	16	10,4	0,046	MF-17020	
	32-40	13°	17	M10x 1,25	10	43	14	14	20	12,9	0,076	KF-17032	
	50-63	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,110	KF-17040	

Gabelstück mit Gelenkzapfen

Zyl.		СН	CH1 IA		KK	IH	IB	ID	ΙE	IF	IG	Masse	Artikelnr.
	ø	Å	<u></u>			0 ±0,3						kg	Artikeinr.
	16	11	8	30°	M6 x 1	12,2	22	11	55,2	28	15	0,04	MF-22016
	20÷25	14	10	30°	M8 x 1,25	16	28	12	65	32	16	0,075	MF-22020
	32-40	17	11	30°	M10x 1,25	19,5	32	15	74,5	35	18	0,120	KF-22025
	50-63	19	11	30°	M12 x 1.25	22	36	17	84	40	20	0.185	KF-22040

Gabelstück mit Winkelgelenkzapfen

Zyl.	СН	CH1	LG	кк	IB	l ID	LA	LB	LC	LD	ΙF	l F	Masse	
Ø	A	ĥ	J	KK			0 ±0,3		L		1	j	kg	Artikelnr.
16	11	8	50°	M6x1	22	11	11	26	14	35,5	30	40	0,037	MF-23012
20÷25	14	10	50°	M8x1,25	28	12	14	31	17	42,5	36	48	0,067	MF-23020
32-40	17	11	50°	M10x1,25	32	15	17	37	21	50,5	43	57	0,110	KF-23025
50-63	19	17	50°	M12x1,25	36	17	19	42	27	57,5	50	66	0,165	KF-23040
00 00	. •	١		,29		١.,				0.,0			0,.00	

Eine neue Serie von Kompaktzylindern für lange Hublängen oder schwere Einsatzbedingungen, serienmäßig mit Führungen und vergrößerten Kolbenstangen ausgestattet, der erste mit einstellbarer pneumatischer Dämpfung ohne maßliche Veränderung. Die Bohrungsabstände, Zentrierungsdurchmesser und Kolbenstangen sind gemäß ISO 6431 und VDMA 24562.

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20 ÷ +80°C

Betriebsmedium: Druckluft mit oder ohne Schmierung. Zylinderrohr aus Strangpreßprofil in Aluminiumlegierung

mit Kolbenstange aus verchromtem Stahl.

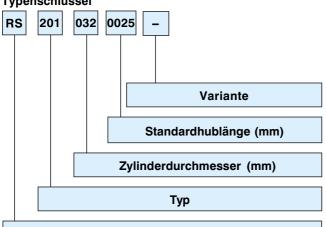
Vergrößerte Führungen.

Einstellbare Dämpfung (10 mm ~).

Die Version mit verdrehsicherer Kolbenstange

(Serie RQ...) ist serienmäßig mit Flansch ausgestattet.

Max. Geschwindigkeit: 1 m/s


Magnetausführung.

- Magnetsensor Serie DF-__ (Abschnitt Zubehör Seite 2).
- Drahtabdeckungsband für Magnetsensor Typ. DHF-002100.
- Flansch für Serie RS Typ -00/-01/-20/-60/-70.
- Hohle Kolbenstange nur für Ausführungen mit durchgehender Kolbenstange.
- Ausgelegt für Feststelleinheit nur mit verchromter Kolbenstange.
- Führungseinheit nur für Zylindertypen mit verlängertem Kolben (Seite 63-I).

Auf Anfrage

Typenschlüssel

Kompaktzylinder STRONG Ø 032 ÷ 063 mm standardmäßig in Magnetausführung, mit Dämpfung und vergrößerter Führung:

Serie

Rundes Zylinderrohr

Serie RS - kompakt STRONG

Achteckiges Zylinderrohr

Serie RQ - kompakt UNITOP verdrehsichere Kolbenstange mit Flansch

TYP

Serie RS

- 1. mit nichtrostender Kolbenstange
- 2... mit verchromter Kolbenstange
- _00 doppelwirkend
- -01 doppelwirkend, durchgehende Kolbenstange
- 10 doppelwirkend, verdrehsichere Kolbenstange
- _11 doppelwirkend, durchgehende verdrehsichere Kolbenstange
- _20 doppelwirkend, langer Kolben
- -60 einfachwirkend, Kolbenstange eingefahren
- _70 einfachwirkend, Kolbenstange ausgefahen
- 3... KolbenstangemitAußengewinde aus nichtrostendem Stahl
- 4... Kolbenstange mit Außengewinde aus verchromtem Stahl
- _00 doppelwirkend
- -01 doppelwirkend, durchgehende Kolbenstange-20 doppelwirkend, langer Kolben
- _60 einfachwirkend, Kolbenstange eingefahren
- _70 einfachwirkend, Kolbenstange ausgefahren

- 1... mit Kolbenstange aus nichtrostendem Stahl
- mit Kolbenstange aus verchromtem Stahl
- _00 doppelwirkend
- -01 doppelwirkend, durchgehende Kolbenstange

- _20 doppelwirkend, langer Kolben
- -60 einfachwirkend, Kolbenstange eingefahren
- _70 einfachwirkend, Kolbenstange ausgefahren

DURCHMESSER

032 - 040 - 050 - 063 mm

STANDARDHUBLÄNGEN

Einfachwirkend

0005-0010-0015-0020-0025 mm

Max. Hub: 0025 mm

Doppelwirkend

0005-0010-0015-0020-0025-0030-0040-0050-0060 0080-0100-0125-0150-0160-0175-0200-0250-0300 0320-0350-0400-0450-0500-0600-0700-0800 mm

Max. Hub: Ø 32-40 **0400 mm**

Ø 50 0500 mm 0800 mm Ø 63

Ausführung mit verlängertem Kolben

Ø 32-40 **0800 mm** Max. Hub:

Ø 50-63 1000 mm

VARIANTE

- C = mit Flansch für Serie RS Versionen 100/101/160/170 und 200/201/260/270
- **H** = hohle Kolbenstange nur für Versionen mit durchgehender Kolbenstange
- **G** = ausgelegt für Feststelleinheit ausgenommen einfachwirkende Zylinder und nur Zylinder mit verchromter Kolbenstange

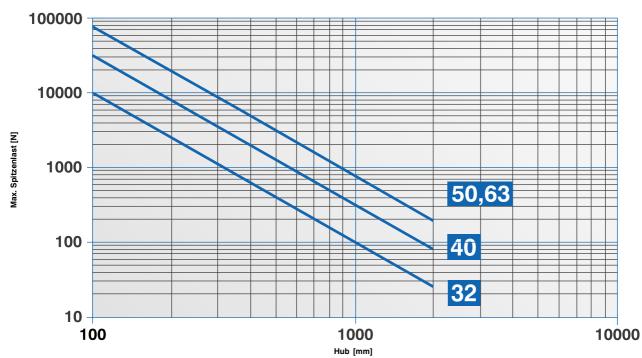
Einige Konstruktionsmerkmale

- · Zylinderköpfe aus Aluminiumlegierung.
- Selbstschneidende Schrauben aus verzinktem Stahl.
- Vergrößerte Kolbenstange aus verchromtem Stahl; auf Anfrage aus nichtrostendem Stahl.
- · Kolben aus Aluminium.
- · Gleitschuh aus Azetalharz.
- Vergrößerte Büchsen.

Kolben aus Aluminium doppelwirkend

 Verlängerter Kolben doppelwirkend für größere radiale Belastungen

- Kolbendichtungen aus Nitrilgummi.
- Kolbenstangendichtungen aus Polyurethan.
- Einstellbare pneumatische Dämpfung zum wirkungsvollen Abbremsen des Kolbens und zur Reduzierung des Geräuschpegels.
- Feststelleinheit Serie L1-N gekoppelt mit verchromter Kolbenstange mit Ausnahme der Ausführungen mit Vorrichtung zur Verdrehsicherung (RS-210...-RS-211...).

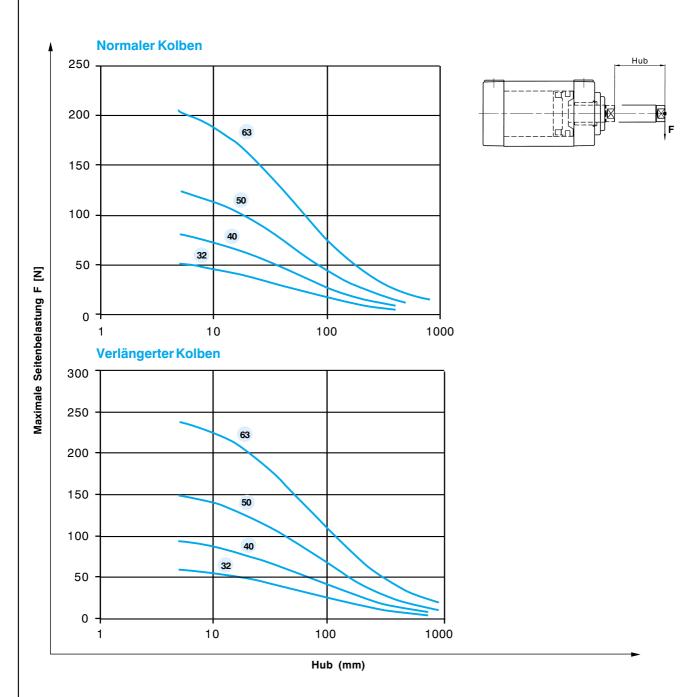

Theoretische Kräfte [N], die sich bei dem jeweiligen Betriebsdruck [bar] entwickeln

Zyl.	Nutzfläch	ie [mm²]	Betriebsdruck [bar]											
Ø			2	4	6	8	10							
32	Schubkraft	804	161	322	482	643	804							
	Zugkraft	691	138	276	414	553	691							
40	Schubkraft	1256	251	502	754	1005	1256							
	Zugkraft	1056	211	422	633	844	1055							
50	Schubkraft	1962	393	785	1178	1570	1963							
	Zugkraft	1649	330	660	990	1320	1650							
63	Schubkraft	3116	623	1246	1869	2493	3116							
	Zugkraft	2802	560	1120	1680	2240	2800							

Maximaler Drehmoment [Nm] für verdrehsichere Kolbenstange Serie RQ

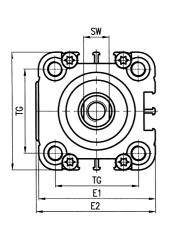
Zyl. Ø	Moment [Nm]
32	2
40	3
50	5
63	8

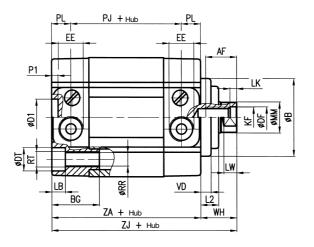
Für Druckluftzylinder mit durchgehender Kolbenstange hat die theoretische Kraft in beiden Richtungen immer denselben Wert wie den unter "Zugkraft" in der Tabelle angegebenen. In der Praxis müssen diese Werte jedoch reduziert werden, da Gewicht und Gleitreibung des beweglichen Teils (ca. -10%) zu berücksichtigen sind.



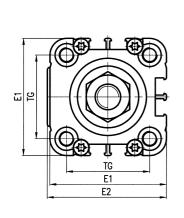
Theoretische Zugkräfte der Feder für Zylinder der Serie260..../....270....

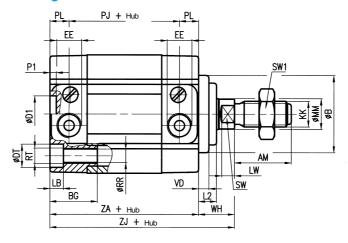
Zyl. Ø	Max. Kraft (N)	Min. Kraft (N)	Max. Hub (mm)	Abnahme pro mm Hub (N/mm)
32	40	24	25	0,64
40	50	35	25	0,6
50	90	49	25	1,64
63	90	49	25	1.64


Kurve der Querbelastung auf Kolbenstange



Doppelwirkender Zylinder Serie RS 200..../ Serie RS 220....* verlängerter Kolben





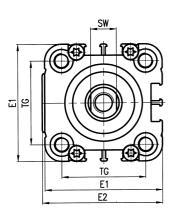
Masse RS 200. Zyl. Hub "0" (g) Bewegl. Teil Hub "0" (g) Zyl. Zunahme pro Zunahme pro mm Hub (g) mm Hub (g) 32 215 2,65 70 0,9 40 347 110 4 1,6 50 520 5,6 180 2,5 63 800 6,55 260 2,5

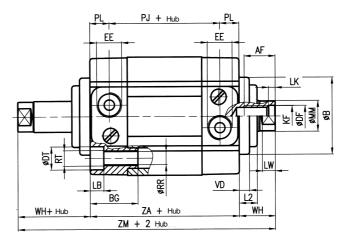
		Masse RS	220			
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)		
32	301,5	2,65	121,5	0,9		
40	482	4	197	1,6		
50	769	5,6	327	2,5		
63	1151,5	6,55	485	2,5		

Doppelwirkender Zylinder Kolbenstange mit Außengewinde Serie RS 400..../ Serie RS 420....* verlängerter Kolben

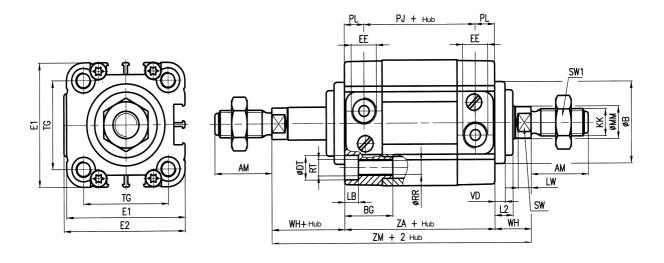
		Masse RS	400	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	245	2,65	100	0,9
40	392	4	155	1,6
50	600	5,6	260	2,5
63	880	6.55	340	2.5

	Masse RS 420												
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)									
32	331,5	2,65	151,5	0,9									
40	527	4	242	1,6									
50	849	5,6	407	2,5									
63	1231,5	6,55	565	2,5									


Zyl. Ø	AF	ΑМ	Ø B	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA	ZJ
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	2,5	29	7,5	5,2	М6	10	17	32,5	4	14	44	58
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	2,5	30	7,5	5,2	М6	13	19	38	4	14	45	59
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	М8	17	24	46,5	5	18	45	63
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	34	7,5	6,5	M8	17	24	56,5	5	18	49	67

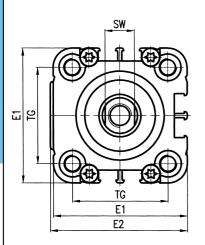

^{*} Für die Zylindertypen mit verlängertem Kolben nehmen die Maße PJ, ZA und ZJ um 20 mm (Ø 32-40 mm) und um 25 mm (Ø 50-63 mm) zu.

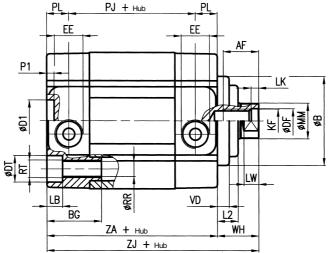
Doppelwirkender Zylinder, durchgehende Kolbenstange Serie RS 201 ...



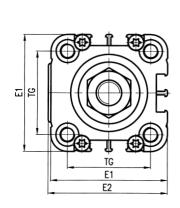
	Masse												
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)									
32	245	3,55	96	1,8									
40	392	5,6	151	3,2									
50	596	8,1	250	5									
63	875	9,05	330	5									

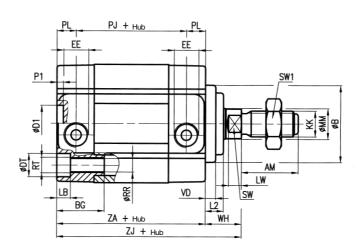
Doppelwirkender Zylinder, durchgehende Kolbenstange mit Außengewinde Serie RS 401


		wass	е	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	305	3,55	156	1,8
40	482	5,6	241	3,2
50	756	8,1	410	5
63	1035	9,05	490	5


Zyl. Ø	AF	АМ	Ø B	ВG	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA	ZM
32	12	22	30	18	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	29	7,5	5,2	M6	10	17	32,5	4	14	44	72
40	16	24	35	18	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	30	7,5	5,2	M6	13	19	38	4	14	45	73
50	20	32	40	24	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	30	7,5	6,5	M8	17	24	46,5	5	18	45	81
63	20	32	45	24	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	34	7,5	6,5	M8	17	24	56,5	5	18	49	85

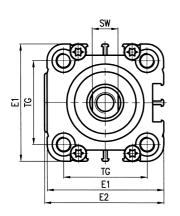
Einfachwirkender Zylinder, Kolbenstange eingefahren SerieRS 260 ...

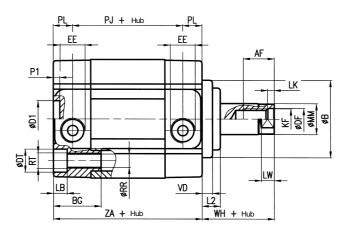




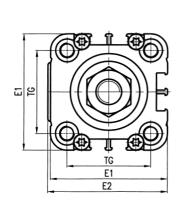
		Mass	е	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	217	2,65	73	0,9
40	350	4	116	1,6
50	525	5,6	192	2,5
63	805	6,55	272	2,5

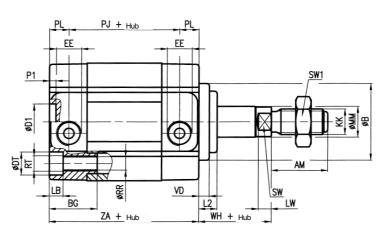
Einfachwirkender Zylinder, Kolbenstange mit Außengewinde eingefahren Serie RS 460---


		wass	е	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	247	2,65	103	0,9
40	395	4	161	1,6
50	605	5,6	272	2,5
63	885	6,55	352	2,5


Zyl. Ø	AF	АМ	ØВ	ВG	ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	KK	L2	LB	LK	LW	Ø MM	Р1	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA	ZJ
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44	58
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	2,5	30	7,5	5,2	М6	13	19	38	4	14	45	59
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	M8	17	24	46,5	5	18	45	63
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	34	7,5	6,5	M8	17	24	56,5	5	18	49	67

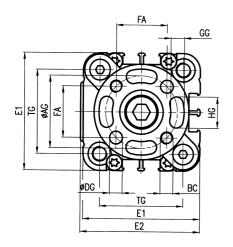
Einfachwirkender Zylinder, Kolbenstange ausgefahren Serie RS 270 ...

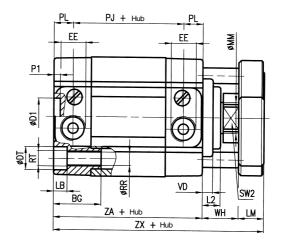




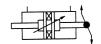
		Mass	е	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	213	2,65	73	0,9
40	344	4	116	1,6
50	515	5,6	192	2,5
63	795	6,55	272	2,5

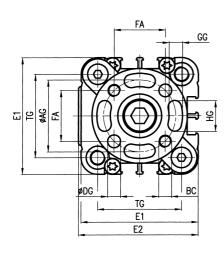
Einfachwirkender Zylinder, Kolbenstange mit Außengewinde ausgefahren Serie RS 470 ...

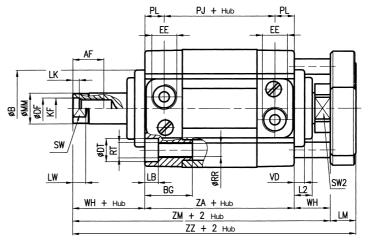

	Zyl. Ø				Zunahme pro mm Hub (g)	
	32	243	2,65	103	0,9	
	40	398	4	161	1,6	
	50	595	5,6	272	2,5	
	63	875	6,55	352	2,5	


Zyl. Ø	AF	АМ	Ø B		ØD1 H11	Ø DF	Ø DT	E1	E2	EE	KF	кк	L2	LB	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	TG	VD	WH	ZA
32	12	22	30	18	14	8,2	9	46	47	G1/8	M8	M10x1,25	7	5,3	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44
40	16	24	35	18	14	10,2	9	56	57	G1/8	M10	M12x1,25	7	5,3	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45
50	20	32	40	24	18	12,2	11	66	67	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	30	7,5	6,5	M8	17	24	46,5	5	18	45
63	20	32	45	24	18	12,2	11	79	80	G1/8	M12	M16x1,5	10	6,5	2	6	20	2,5	34	7,5	6,5	M8	17	24	56,5	5	18	49

Doppelwirkender Zylinder mit Vorrichtung zur Verdrehsicherung Serie RS 210



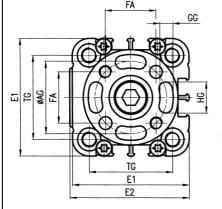


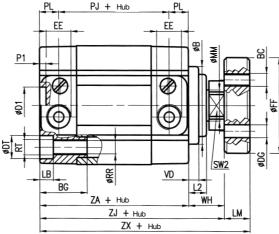


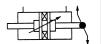
		Mass	е	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	255	3,09	110	1,34
40	414	4,8	177	2,4
50	622	6,4	282	3,3
63	952	7,79	412	3,7

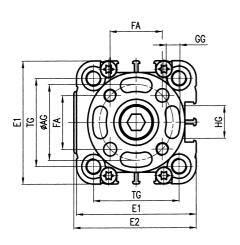
Doppelwirkender Zylinder, durchgehende Kolbenstange mit Vorrichtung zur Verdrehsicherung Serie RS 211---

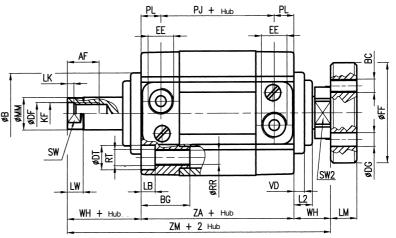
Zyl. Ø	AF	Ø AG	Ø B	вс	ВG	ØD1 H11	Ø DF	Ø DG	Ø DT
32	12	28	30	M5	18	14	8,2	5	9
				ı		14			
50	20	42	40	M6	24	18	12,2	6	11
63	20	50	45	M6	24	18	12,2	6	11


		Mass	<u>e</u>	
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	285	3,99	136	2,24
40	459	6,4	218	4
50	698	8,9	352	5,8
63	1025	10 29	482	6.24


Zyl. Ø	E 1	E2	EE	FA	GG	НG	KF	L2	LB	LM	LK	LW	Ø MM	Р1	ΡJ	PL	Ø RR	RT	sw	SW2	TG	VD	WH	ZA	ZM	ZX	zz
32	46	47	G1/8	19,8	5,2	11	M8	7	5,3	10	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	14	44	72	68	82
40	56	57	G1/8	23,3	5,2	15	M10	7	5,3	10	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	14	45	73	69	83
50	66	67	G1/8	29,7	6,2	19	M12	10	6,5	12	2	6	20	2,5	30	7,5	6,6	M8	17	24	46,5	5	18	45	81	75	93
63	79	80	G1/8	35,4	6,2	25	M12	10	6,5	12	2	6	20	2,5	34	7,5	6,6	M8	17	24	56,5	5	18	49	85	79	97




Sollte es sich als nötig
Sollte es sich als nötig
erweisen, den Flansch
erweisen, den Flansch
von der Kolbenstange
er lösen, darf
zu lösen, darf
zu lösen, darf
zu schraub kraft
zu schraub unter
Losschließlich unter
ausschließlich unter
verwendung
verwendung
verwendung
sechskantschlüssels
Sechskantschlüssels
sechskantschlüssels
sechskantschlüssels
werden.


Masse RQ 200										
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)						
32	240	2,65	94	0,9						
40	386	4	148,5	1,6						
50	587	5,6	247	2,5						
63	894	6.55	354	2.5						

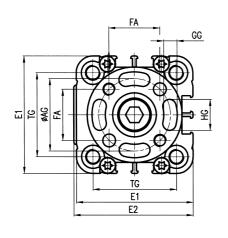
	Masse RQ 220											
	Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)							
	32	326,5	2,65	146,5	0,9							
	40	522	4	237	1,6							
	50	839	5,6	397	2,5							
Ī	63	1249,5	6,55	583	2,5							

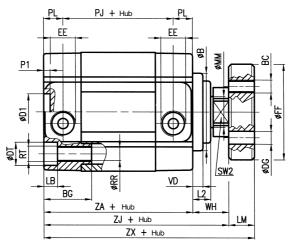
Doppelwirkender Zylinder mit durchgehender verdrehsicherer Kolbenstange Serie RQ 201....

Zyl. Ø	AF	Ø AG										EE		
32	12	28	30	M5	18	14	8,2	5	9	46	47	G1/8	19,8	37
40	16	33	35	M5	18	14	10,2	5	9	56	57	G1/8	23,3	42
50	20	42	40	M6	24	18	12,2	6	11	66	67	G1/8	29,7	52
63	20	50	45	M6	24	18	12,2	6	11	79	80	G1/8	35,4	64

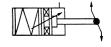
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)						
32	270	3,55	120	1,8						
40	431	5,6	189,5	3,2						
50	663	8,1	317	5						
63 969		9.05	424	5						

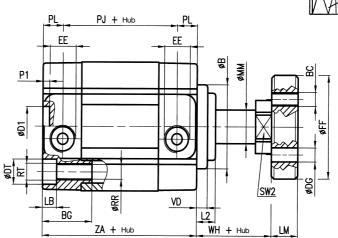
Massa


Zyl. Ø	GG	НG	KF	L2	LB	LM	LK	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW2	тG	VD	VD 1	WH	ZA	ZM	ZJ	zx
32	5,2	11	M8	7	5,3	10	2	5	12	2,5	29	7,5	5,2	M6	10	17	32,5	4	3	14	44	72	58	68
40	5,2	15	M10	7	5,3	10	2	5	16	2,5	30	7,5	5,2	M6	13	19	38	4	3	14	45	73	59	69
50	6,2	19	M12	10	6,5	12	2	6	20	2,5	30	7,5	6,6	M8	17	24	46,5	5	3	18	45	81	63	75
63	6,2	25	M12	10	6,5	12	2	6	20	2,5	34	7,5	6,6	M8	17	24	56,5	5	3	18	49	85	67	79


^{*} Für die Zylindertypen mit verlängertem Kolben nehmen die Maße PJ, ZA, ZJ und ZX um 20 mm (Ø 32-40 mm) und um 25 mm (Ø 50-63 mm) zu.

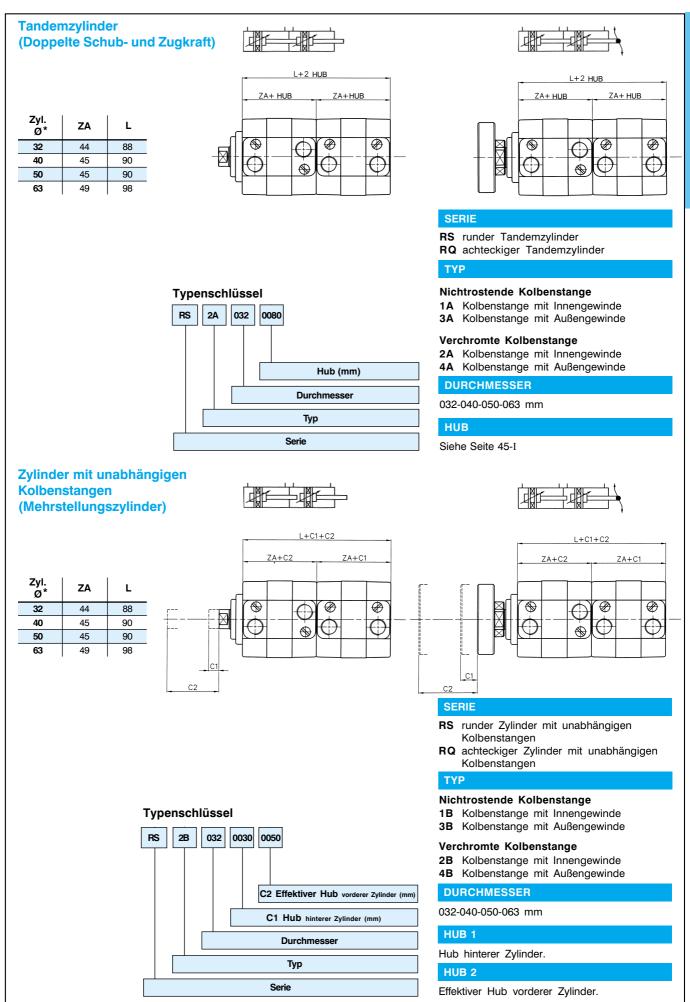
Einfachwirkender Zylinder, verdrehsichere Kolbenstange eingefahren Serie RQ 260...




Sollte es sich als nötig erweisen, den zu Sollte es sich als nötig erweisen, den zu transch von der Kolbenstange zu Flansch von der Losschraubkrat iösen, darf der Losschwendungdes Sw2 lösen, darf der Losschwenden Sw2 ausschießlichunter Les ein sech skantschlüssels Sech skantschlüssels Sech skantschlüssels entgegengewirkt werden.

Masse										
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)						
32	242	2,65	97	0,9						
40	389	4	154,5	1,6						
50	592	5,6	259	2,5						
63	900	6,55	366	2,5						

Einfachwirkender Zylinder, verdrehsichere Kolbenstange ausgefahren Serie RQ 270---



Z	zyl. Ø	Ø AG	Ø B	вс	ВG	ØD1 H11	Ø DG	Ø DT	E1
Ξ;	32	28	30	M5	18	14	5	9	46
7	40	33	35	M5	18	14	5	9	56
_	50	42	40	М6	24	18	6	11	66
(63	50	45	M6	24	18	6	11	79

Masse											
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)							
32	238	2,65	97	0,9							
40	383	4	154,5	1,6							
50	582	5,6	259	2,5							
63	890	6.55	366	2.5							

Zyl. Ø	E2	EE	FA	Ø FF	GG	HG	L2	LB	LM	Ø MM	P1	PJ	PL	Ø RR	RT	SW2	TG	VD	WH	ZA	ZJ	zx
32	47	G1/8	19,8	37	5,2	11	7	5,3	10	12	2,5	29	7,5	5,2	М6	17	32,5	4	14	44	58	68
40	57	G1/8	23,3	42	5,2	15	7	5,3	10	16	2,5	30	7,5	5,2	М6	19	38	4	14	45	59	69
50	67	G1/8	29,7	52	6,2	19	10	6,5	12	20	2,5	30	7,5	6,6	M8	24	46,5	5	18	45	63	75
63	80	G1/8	35,4	64	6,2	25	10	6,5	12	20	2,5	34	7,5	6,6	M8	24	56,5	5	18	49	67	79

Zyl. Ø*

32

40

50 63

Gegenübergestellter Zylinder

ZA

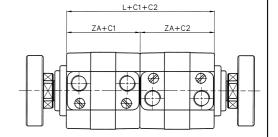
45

45

49

88

90


90

98

1	_	1					
		ZA+C1		-	ZA+C2	·	
حرا							<u></u>
	\bigcirc		\bigcirc	(*			

SERIE

- **RS** Runder Zylinder mit gegenübergestellten Kolbenstangen
- **RQ** Achteckiger Zylinder mit gegenübergestellten Kolbenstangen

TY

Nichtrostende Kolbenstange

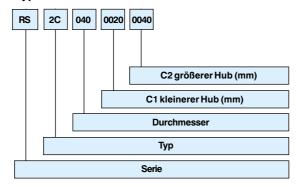
- 1C Kolbenstange mit Innengewinde
- 3C Kolbenstange mit Außengewinde

Verchromte Kolbenstange

- **2C** Kolbenstange mit Innengewinde
- 4C Kolbenstange mit Außengewinde

DURCHMESSER

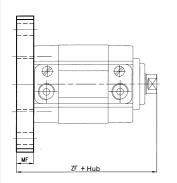
032-040-050-063 mm

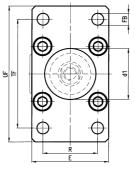

HUB 1

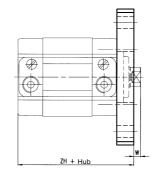
Siehe Seite 45-I

HUB 2

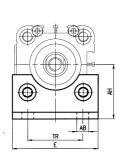
Siehe Seite 45-I

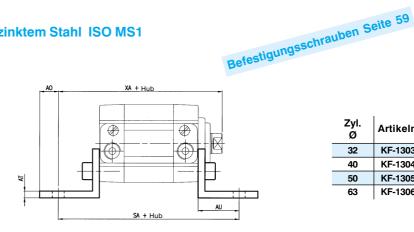

T.,	pens	ablü	2021
1 7	pens	Ciliu	55EI




^{*} Für die restlichen Maße siehe Standardversion Seiten 48 und 53.

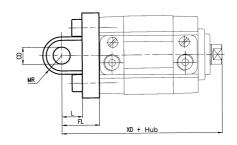
Vorderer/hinterer Flansch aus verzinktem Stahl ISO MF1-MF2

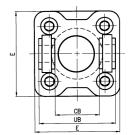




Zyl. Ø	Artikelnr.	Masse kg
32	KF-12032	0,20
40	KF-12040	0,25
50	KF-12050	0,50
63	KF-12063	0,65

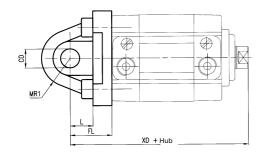
Winkel-Fußbefestigung aus verzinktem Stahl ISO MS1

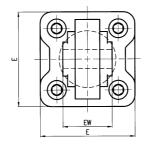

Zyl. Ø	Artikelnr.	Masse kg
32	KF-13032	0,07
40	KF-13040	0,09
50	KF-13050	0,20
63	KF-13063	0,20


Adapterring für hintere ISO Zentrierung

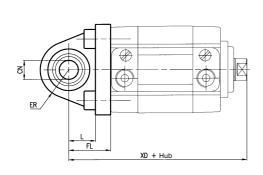
Zyl. Ø	Artikelnr.
32	RSF-09032
40	RSF-09040
50	RSF-09050
63	RSF-09063

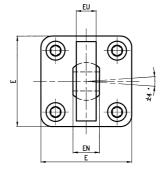
Hinterer Gelenklagerbock aus Aluminiumdruckguß mit Bolzen aus verzinktem Stahl ISO MP2


Zyl. Ø	Artikelnr.	Masse kg
32	KF-10032A	0,06
40	KF-10040A	0,08
50	KF-10050A	0,15
63	KF-10063A	0.25

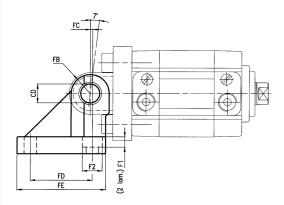

Wenn man den Bolzen entfernt ist es möglich, den Gelenklagerbock auch vorne zu verwenden.

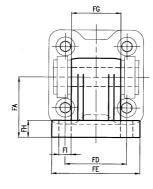
											I																		
				F	lans	ch								Fuß	befestig	ung				Adap	terring	G	elenkl	age	rboc	k mi	it Bo	lzer	1
Zyl. Ø	Ød1 H11		ØFB H13	l	MF	1	TF Js14	UF	ZF	ZH	ØAB H13		AO	AT	AU ± 0.2	E	SA	TR	XA	ØB	VD1	CB H14	ØCD H9	E	FL	L	MR	UB h14	1
32	30	45	7	4	10	32	64	80	68	54	7	32	6	4	24	45	92	32	82	30	3	26	10	48	22	12	11	45	80
40	35	52	9	4	10	36	72	90	69	55	9	36	8	4	28	52	101	36	87	35	3	28	12	54	25	15	13	52	84
50	40	65	9	6	12	45	90	110	75	57	9	45	10	5	32	64	109	45	95	40	3	32	12	65	27	15	13	60	90
63	45	75	9	6	12	50	100	120	79	61	9	50	12	5	32	74	113	50	99	45	3	40	16	75	32	20	17	70	99


Hinteres Gelenklager aus Aluminiumdruckguß, ISO MP4 ohne Bolzen



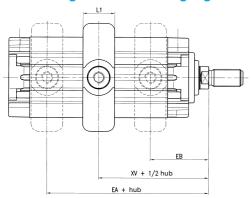
Zyl. Ø	Artikelnr.	Masse kg
32	KF-11032	0,20
40	KF-11040	0,25
50	KF-11050	0,50
63	KF-11063	0,65

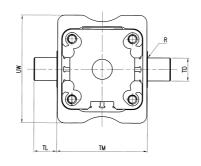

Drehgelenklager aus Aluminiumdruckguß



Zyl. Ø	Artikelnr.	Masse kg
32	KF-11032S	0,10
40	KF-11040S	0,20
50	KF-11040S	0,30
63	KF-11063S	0,35

Gegengelenk 90° aus Aluminiumdruckguß


Befestigungsschrauben Seite 59


Zyl. Ø	Artikelnr.	Masse kg
32	KF-19032	0,09
40	KF-19040	0,12
50	KF-19040	0,20
63	KF-19063	0,32

Hinteres Gelenklager Drehgelenklager								Gegengelenk																		
Zyl. Ø	ØCD H9	IF	EW toll. -0.2/-0.6		L	MR1	XD	ØCN H9	E	EN	ER	EU	FL	L	XD	ØCD H9	FA Js15	Æ	FC	FD	FE	FG -0.2/-0.6	FH	FI	F1	F2
32	10	48	26	22	12	15	80	10	48	14	15	10.5	22	14	80	10	32	10	1.2	32.5	46.5	26	9	6.4	5.5	10.5
40	12	54	28	25	15	18	84	12	54	16	18	12	25	16.5	84	12	36	12	2.6	38	51.5	28	9	6.4	5.5	10.5
50	12	65	32	27	15	20	90	12	65	16	20	12	27	17.5	90	12	45	12	0.3	46.5	63.5	32	9	8.4	5	13.5
63	16	75	40	32	20	23	99	16	75	21	23	15	32	21.5	99	16	50	16	3.3	56.5	73.5	40	10.5	8.4	5	13.5

Zwischengelenk mit Befestigungsdübel

Zyl.	EA				TD	TL	TM			V
Ø	(max)	(min)	(max)	(max)	(e9)	(h14)	(h14)	(max)	Nom.	Tol.
32	31	41	22	0,5	12	12	50	65	36	±2
40	32	41	22	0,5	16	16	63	75	36,5	±2
50	36	45	22	1	16	16	75	95	40,5	±2
63	37	48	28	1	20	20	90	105	42,5	±2

Zyl. Ø Artikelnr. Masse kg
32 KDF-14032 0,13
40 KDF-14040 0,24
50 KDF-14050 0,32
63 KDF-14063 0,47

Flansch für Kolbenstange mit Innengewinde aus Aluminiumdruckguß (einschließlich Schraube für Montage an achteckigen Zylindertypen der Serie RQ)

Zyl. Ø	Artikelnr.	Masse kg
32	RPF-28032	0,024
40	RSF-28040	0,035
50	RSF-28050	0,057
63	RSF-28063	0,094

Flansch für Kolbenstange mit Vorrichtung für Verdrehsicherung aus Aluminiumdruckguß für Serien RS210----RS211----(mit Befestigungsschrauben)

Zyl. Ø	Artikelnr.	Masse kg
32	RPF-29032	0,026
40	RSF-29040	0,036
50	RSF-29050	0,065
63	RSF-29063	0,100

Bolzen aus verzinktem Stahl mit 2 Sicherungsrringen

Zyl. Ø	FF f8	FL	FM	Masse kg	Artikelnr.
32	10	53	46	0,03	KF-18032
40	12	61,3	53	0,05	KF-18040
50	12	69	61	0,05	KF-18050
63	16	80,5	71	0,12	KF-18063

Zylinderschraube UNI 5931 Artikelnr. AZ4-VN.... geeignet für Montageelemente der Serien KF-12.../KF-13...

	Zyl. Ø	Schraube	Artikelnr.
	32-40	M6x20	AZ4-VN0620
۰	50-63	M8 x 25	AZ4-VN0825

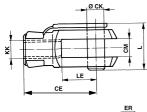
Zylinderschraube UNI 5931 Artikelnr. AZ4-VN.... geeignet für Montageelemente der Serien KF-19... (Ø 32-40)

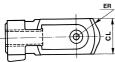
_	Zyl. Ø	Schraube ² Stck. pro Typ	Artikelnr.
	32-40	M6 x 20	AZ4-VN0620
	02-40	M6 x 25	AZ4-VN0625

Kolbenstangenmutter aus verzinktem Stahl

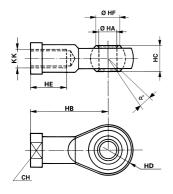
	Zyl. Ø	ZM	кк	OR	Artikelnr.
	32	M10x1,25	17	6	KF-16032
_	40	M12x1,25	19	7	KF-16040
Ī	50-63	M16x1,5	24	8	KF-16050

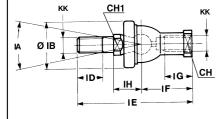
Zylinderschraube UNI 5931 Artikelnr. AZ4-VN...geeignet für Montageelemente der Serien KF-10.../KF-11...


Zyl. Ø	Schraube	Artikelnr.
32-40	M6 x 25	AZ4-VN0625
50-63	M8 x 30	A74-VN0830

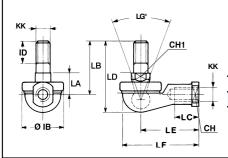

Zylinderschraube UNI 5931 Artikelnr. AZ4-VPA...geeignet für Montageelemente der Serien KF-19... (Ø 50-63)

Zyl. Ø	Schraube ² Stck. pro Typ	Artikelnr.
50-63	M8 x 25	AZ4-VPA0825
30-03	M8 x 30	AZ4-VPA0830


Doppeltes Gelenk aus verzinktem Stahl für Kolbenstange nach ISO Norm 8140 mit Bolzen

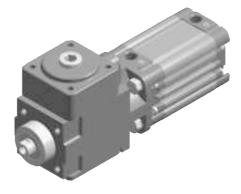

Zyl.	CE	СК	CL	СМ	ER	KK	L	LE	Masse	Artikelnr.
Ø				B12					kg	Artikeiiir.
32	40	10	20	10	16	M10 x 1,25	26	20	0,09	KF - 15032
40	48	12	24	12	19	M12 x 1,25	32	24	0,015	KF - 15040
50-63	64	16	32	16	25	M16 x 1,5	39	32	0,34	KF - 15050

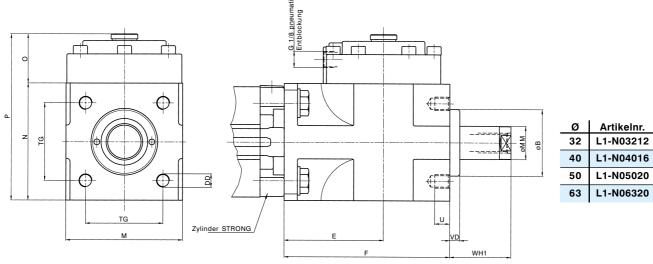
Selbstschmierende Gelenkgabel aus verzinktem Stahl


	α	СН	KK	НА	НВ	нс	HD	HE	HF		
Zyl. Ø				Н7			0 -0,12			Masse kg	Artikelnr.
32	13°	17	M10 x 1,25	10	43	14	14	20	12,9	0,076	KF - 17032
40	13°	19	M12 x 1,25	12	50	16	16	22	15,4	0,11	KF - 17040
50-63	15°	22	M16 x 1,5	16	64	21	21	28	19,3	0,22	KF - 17050

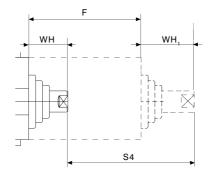
Gabel mit Gelenkzapfen

	Zyl. Ø	сн	CH1 ⊝ౌ	IA	KK	1H ±0,3	ΙB	ID	ΙE	IF	IG	Masse kg	Artikelnr
	32	17	11	30°	M10 x 1,25	19,5	32	15	74,5	35	18	0,12	KF - 22025
Ì	40	19	17	30°	M12 x 1,25	22	36	17	84	40	20	0,185	KF - 22040
	50-63	22	19	22°	M16 x 1,5	27,5	47	23	112	50	27	0,36	KF - 22050


Gabel mit Winkelgelenkzapfen



Zyl.	СН	CH1	LG	LG				LA						Masse	
ø	<u></u>	A	LG	KK	KK IB ID		±0.3	±0.3 LB LC		LD LE		LF	kg	Artikelnr.	
32	17	11	50°	M10 x 1,25	32	15	17	37	21	50,5	43	57	0,11	KF - 23025	
40	19	17	50°	M12 x 1,25	36	17	19	42	27	57,5	50	66	0,165	KF - 23040	
50-63	22	19	40°	M16 x 1,5	47	23	23,5	60	33	79,5	64	84	0,33	KF - 23050	



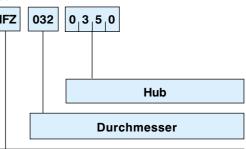
ø	В	DD	E	F	М	ММ	N	0	P	TG	U	VD	WH1
32	30	M6	54,5	84	50	12	50	29,5	79,5	32,5	10	6	26
40	35	M6	58	90	58	16	58	29,5	87,5	38	9	6	30
50	40	M8	60	100	70	20	70	29	99	46,5	10	6	37
63	45	M8	65	110	85	20	85	37	122	56,5	13	6	37

Befestigungsschrauben Dübel UNI 5923 mit Stützring und Mutter UNI 5589

Ø				Artikelnr.
	Dübel	4	M6x30	AZ4-VS0630
Ø 32	Ring	4	6,4 x 16	AZ4-SR06,41,6
	Mutter	4	M6x1	AZ4-SO0064
	Dübel	4	M6x30	AZ4-VS0630
Ø 40	Ring	4	6,4 x 1,6	AZ4-SR06,41,6
	Mutter	4	M6x1	AZ4-SO0064
	Dübel	4	M8x40	AZ4-VS0840
Ø 50	Ring	4	8,4 x 1,6	AZ4-SR841,6
	Mutter	4	M8x1,25	AZ4-SH08125
	Dübel	4	M8x40	AZ4-VS0840
Ø 63	Ring	4	8,4 x 1,6	AZ4-SR8,41,6
	Mutter	4	M8x1,25	AZ4-SH08125

Kolbenstangenvergrößerung S4, Überstand ISO

Zyl. Ø	WH	F	WH,	S4
32	14	84	26	96
40	14	90	30	106
50	18	100	37	119
63	18	110	37	129



Technische Daten

- Brems- und Feststellsystem axial zum Zylinder angeordnet und im hinteren Teil innen integriert.
- Hohe Wiederholgenauigkeit und Eingriffsgeschwindigkeit (16 m/s).
- Empfohlene Anwendung: Bremseingriff in Notsituation bei erlaubter
 Zylindergeschwindigkeit; bei sich wiederholendem Betrieb als
 Feststelleinheit oder Bremseingriff ≤ 50 m/s.
- Festhaltekraft der Kolbenstange ohne Axialspiel ≥ 3 Mal die Schubkraft des mit 6 bar beaufschlagten Zylinders (siehe Seite 46).
- Unempfindlich gegen Umweltverschmutzung.

Typenschlüssel

Serie

Betriebsdruck: 3 ÷ 10 bar

Umgebungstemperatur: -10C $^{\circ}$ ÷ 70 $^{\circ}$ C Betriebsmedium: gefilterte Druckluft 30 μ m

Zylinderrohr strongpressprofil aus Aluminiumlegierung mit

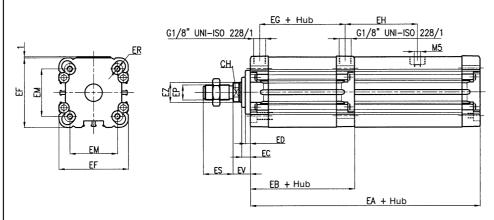
Rinne für eingelassene Sensoren. Kolbenstange aus Chromstahl.

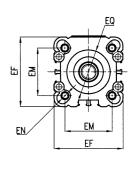
Funktionsweise der Festelleinheit passiv

ohne Signal und/oder Speisung.

Mindestdruck: ≥ 3 bar.

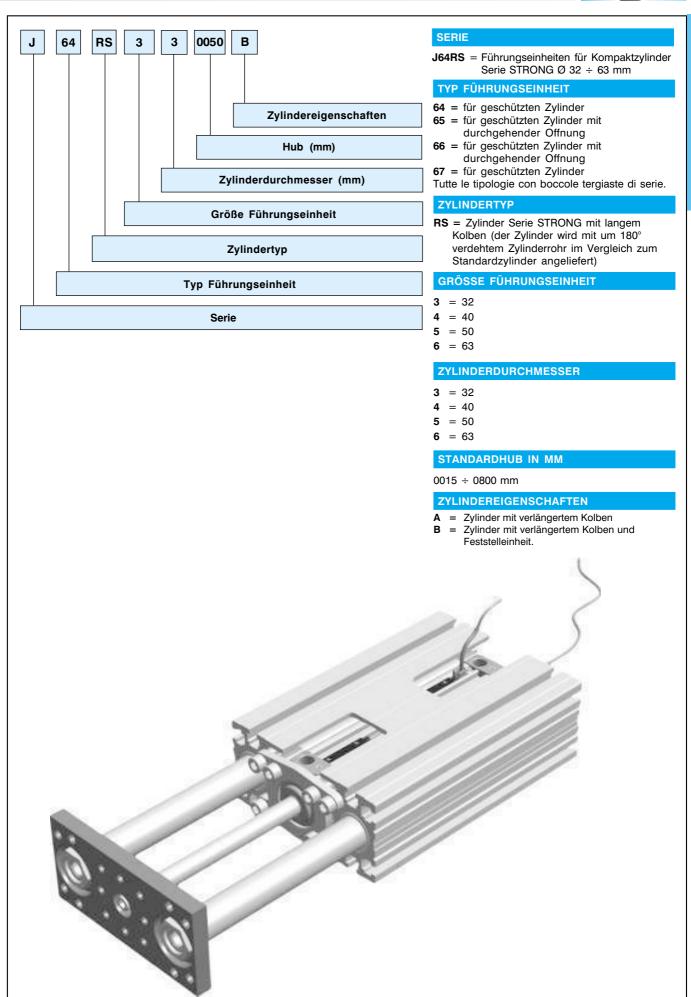
Festhaltekraft der Kolbenstange: ≥ 3 mal die Schubkraft

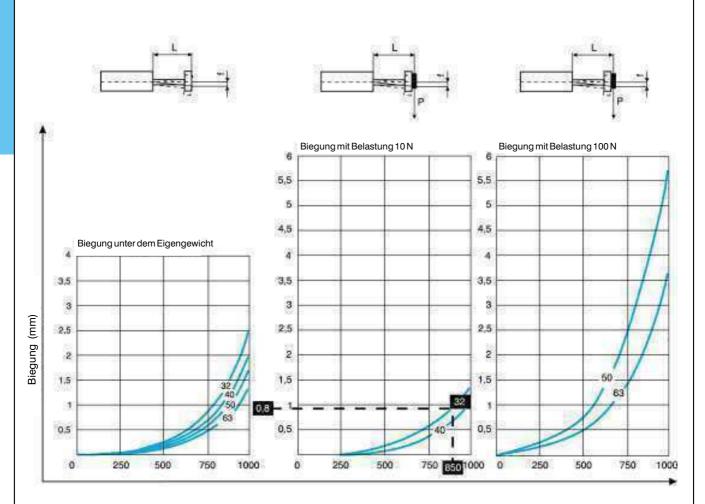

des Zylinders bei 6 bar Druck.


DURCHMESSER

032-040-050-063 mm

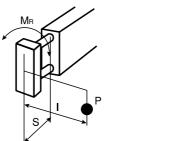
MAX HUB


350 mm für Ø 32 450 mm für Ø 40 600 mm für Ø 50 750 mm für Ø 63


Ø	EA	EB	EC	ED	EF	EG	EH	EM	EN	EP	EQ	ER	ES	EV	EZ	СН
32	177	84	7	4	46	68,5	55,5	32,5	M6 x 13	M10 x 1,25	ø 30	M4 x 10	22	14	12	10
40	185	89	7	4	56	74	58	38	M6 x13	M12 x 1,25	ø 35	M6 x 10	24	14	16	13
50	194	94	10	5	66	76	63	46,5	M8 x 17,5	M16 x 1,25	ø 40	M6 x 10	32	18	20	17
63	214	114	10	5	79	99	63	56,5	M8 x 18	M16 x 1,25	ø 45	M6 x 10	32	18	20	17

Mod. J64

Anwendungsbeispiele:


Beispiel zur Errechnung der Biegung

Die Gesamtbiegung der Führungseinheit wird bestimmt indem die Biegung unter dem Eigengewicht mit der Biegung durch die Belastung summiert wird..

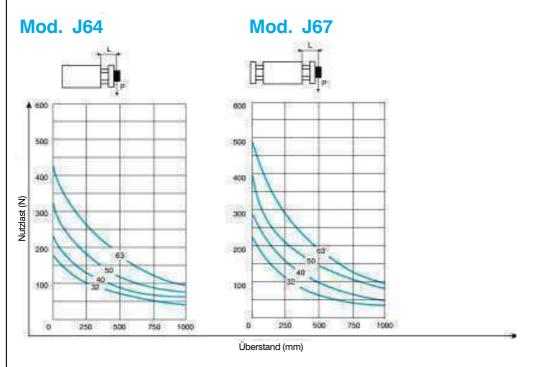
Für Belastungen, die von 10 N oder 100 N (Werte der Kurve) abweichen, erhält man die Biegung indem man den Kurvenwert K mit nachstehendem Verhältnis multipliziert:

$$f = K \cdot \frac{Q \text{ (Belastung)}}{10 \text{ N o } 100 \text{ N}}$$

Werte des maximalen Widerstandsmoments MR

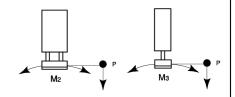
Größe	MF	₹
32	19.9	Nm
40	26.9	Nm
50	42.8	Nm
63	61.7	Nm

Errechnung des Drehmoments

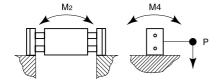

Für die Errechnung des Drehmoments M1 muß die Belastung P (N) mit dem Arm I (mm) multipliziert werden.

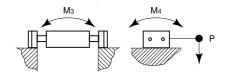
$$M1 = P \cdot I$$

Der so erhaltene Wert muß niedriger sein als die maximalen MR Werte, die in der Tabelle angegeben sind: sollte der erhaltene Wert über diesem Wert liegen, muß auf die nächstgrößere Führungseinheit übergegangen werden.


Sollten überstehende Lasten Drehmomente verursachen, müssen die maximalen Belastungswerte und anwendbaren Drehmomente auf 75% reduziert werden.

2500 2500 1000 200 400 850 800 1000 taso 1400 1600 1800 2006 2200 2400 2800 2000





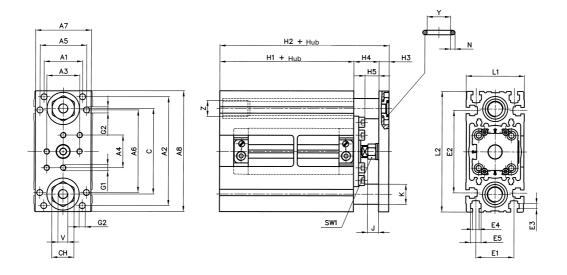
Größe Führungseinheit	M2 = M3 (Nm)
32	37,4
40	51
50	78
63	114

Überstand (mm)

J67 - J67B

Größe Führungsei	nh		ı	M2 (Nı	n)			M3 (Nm)								
								Hub (m/m)								
	100	200	300	400	500	750	1000	100	200	300	400	500	750	1000		
32	89,4	133	178	222	270	386	502	80	126,8	173,6	220	267,2	384	500		
40	117	169,2	223,6	279	334,4	474,8	616	104	160,6	217,4	274	330	472	614		
50	161,4	230	301,4	373,2	446	630	816	138	212,8	287,2	361,6	436	622	808		
63	228	312	402	493	586	818	1102	192,8	288	383	478	573	810	1048		

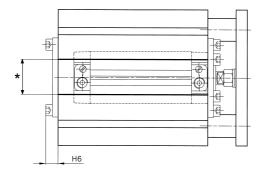
P = Schwerpunkt der Nutzlast


M4 (Nm)

> 39,8 53,8 85,6 123,4

J64..., 2 Führungsbüchsen

Größe	Mas	se Hub "0"	in gr.		unahme (gı mm Hub	r.) pro
	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungsstange	Zylinder
32	1024	303	-	6	2,5	2,65
40	1325	483	-	7	2,8	4
50	2159	739	-	11	3,7	5,6
63	3025	1127	-	13,6	4,7	6,55


Zyl. Ø	A1	A2	А3	A 4	A 5	A 6	A7	A8	С	СН	E1	E2	E3	E4	E 5	G1
32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
6.2	EC	1575	EC E	EG E	70 F	100	OF	175	120	20	EC	120	7.5	10 E	175	MO

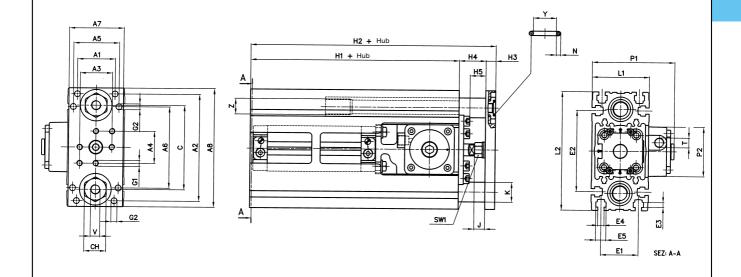
Zyl. Ø	G2(*)	H1 + Hub (**)	H2+ Hub (**)	НЗ	H4	H5	J	к	L1	L2	N	SW1	٧	Y	z
32	Ø6 H8	78 + Hub (**)	113 + Hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78	M16x1,5
40	Ø8 H8	82 + Hub (**)	117 + Hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78	M18x1,5
50	Ø8 H8	91 + Hub (**)	128 + Hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78	M20x1,5
63	Ø8 H8	98 + Hub (**)	135 + Hub (**)	12	25	11	7	28	98	176	2.62	18	1/8"	10.78	M22x1 5

^{*} In Verbindung mit Paß-Stift, Toleranz m6.

ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

J65..., auf Anfrage für Hublängen über 50 mm Führungseinheiten mit durchgehender Öffnung* zur Positionierung der Magnetsensoren in Zwischenstellungen.

Zyll. Ø	Н6
32	11
40	12
50	14
63	14


Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

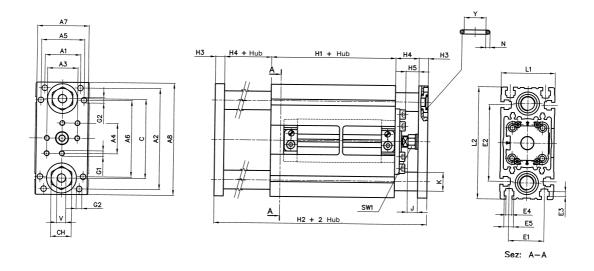
^{**} Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

J 64...N, 2 Führungsbüchsen mit Feststelleinheit

(Größe	Mas	se Hub "0"	in gr.	Massez	unahme (gi mm Hub	r.) pro
		Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungsstange	Zylinder
	32	2241	303	779	6	2,5	2,65
	40	2876	483	992	7	2,8	4
	50	4590	739	1528,5	11	3,7	5,6
	63	6606	1127	2370	13,6	4,7	6,55

Zyl. Ø	A 1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E 5	G1	G2(*)
32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6	Ø6 H8
40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6	Ø8 H8
50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8	Ø8 H8
63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8	Ø8 H8
Zyl. Ø	H1 +	Hub (**)	H2+ H	ub (**)	Н3 1	H4 H5	J F	(L1	L2	N	P1	P2	SW1	т	v	Υ	z

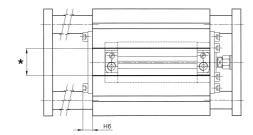
_	Zyl. Ø	H1 + Hub (**)	H2+ Hub (**)	Н3	H4	H5	J	K	L1	L2	N	P1	P2	SW1	Т	٧	Y	Z
	32	151 + Hub (**)	188 + Hub (**)	10	27	16	11	20	58	120	2,62	83,5	50	13	1/8"	1/8"	10,78	M16x1,5
	40	158 + Hub (**)	194 + Hub (**)	10	26	14	11	22	66	130	2,62	91,5	58	16	1/8"	1/8"	10,78	M18x1,5
	50	173 + Hub (**)	209 + Hub (**)	12	24	10	7	25	84	155	2,62	106,5	70	18	1/8"	1/8"	10,78	M20x1,5
	63	187 + Hub (**)	223 + Hub (**)	12	24	10	7	28	98	176	2,62	129	85	18	1/8"	1/8"	10,78	M22x1,5


- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

Für Befestigungszubehör siehe Abschnitt High-Tech Seite 59-II.

J67...., 2 Führungsbüchsen

Größe	Mas	se Hub "0"	in gr.	Massezunahme (gr.) pro mm Hub							
	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungsstange	Zylinder					
32	1092	330	-	6	2,5	2,65					
40	1428	483	-	7	2,8	4					
50	2264	739	-	11	3,7	5,6					
63	3159	1127	-	13,6	4,7	6,55					

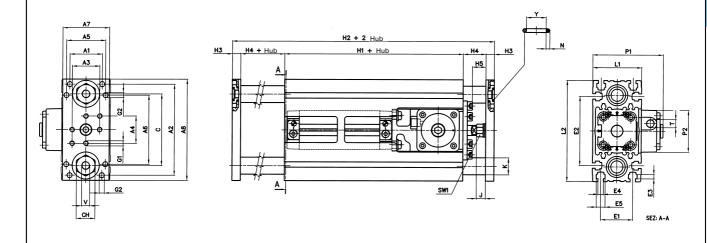

Zyl. Ø	A 1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E 5	G1
32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

	Zyl. Ø	G2(*)	H1 + Hub (**)	H2+ 2 Hub (**)	НЗ	H4	H5	J	К	L1	L2	N	SW1	v	Y
	32	Ø6 H8	78 + Hub (**)	148 + 2 Hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78
	40	Ø8 H8	82 + Hub (**)	152 + 2 Hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78
Ī	50	Ø8 H8	91 + Hub (**)	165 + 2 Hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78
	63	Ø8 H8	98 + Hub (**)	172 + 2 Hub (**)	12	25	11	7	28	98	176	2.62	18	1/8"	10.78

- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

J65..., auf Anfrage für Hublängen über 50 mm Führungseinheiten mit durchgehender Öffnung* zur Positionierung der Magnetsensoren in Zwischenstellungen.


Zyl. Ø	Н6
32	11
40	12
50	14
63	14

Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

J67...B, 2 Führungsbüchsen mit Feststelleinheit

6	Größe	Mas	se Hub "0"	in gr.	Massezunahme (gr.) pro mm Hub								
		Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungsstange	Zylinder						
_	32	2492	303	779	6	2,5	2,65						
	40	3165	483	992	7	2,8	4						
	50	4998	739	1528,5	11	3,7	5,6						
	63	7153			13,6	4,7	6,55						

Zyl. Ø	A 1	A2	А3	A4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E 5	G1
32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	42	118	38	38	54	90	75	130	95	22	42	90	5	6,4	10,4	M6
50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	56	157.5	56.5	56.5	79.5	120	95	175	130	30	56	120	7.5	10.5	17.5	M8

	Zyl. Ø	G2(*)	H1 + Hub (**)	H2+ 2 Hub (**)	НЗ	H4	H5	J	к	L1	L2	N	SW1	v	Y
Ī	32	Ø6 H8	151 + Hub (**)	225 + 2 Hub (**)	10	27	14	11	20	58	120	2,62	13	1/8"	10,78
	40	Ø8 H8	158 + Hub (**)	230 + 2 Hub (**)	10	26	13	11	22	66	130	2,62	16	1/8"	10,78
	50	Ø8 H8	173 + Hub (**)	245 + 2 Hub (**)	12	24	11	7	25	84	155	2,62	18	1/8"	10,78
Ī	63	Ø8 H8	187 + Hub (**)	259 + 2 Hub (**)	12	24	11	7	28	98	176	2.62	18	1/8"	10.78

- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

 $\label{lem:prop:continuous} \mbox{F\"{u}r Befestigungszubeh\"{o}r siehe Abschnitt High-Tech Seite 59-II.}$

Die breite Produktpalette und das besondere Design der "KURZHUBZYLINDER Serie W" von UNIVER erleichtern all jenen die Wahl des korrekten Zylinders, die kompakte Druckluftzylinder mit reduzierten Arbeitshüben brauchen. Ihre Vielseitigkeit, die große Auswahl an Zubehör, die zahlreichen zur Wahl stehenden Durchmesser und die Verwendung von mechanischen Endanschlägen stellen Eigenschaften dar, die den Anforderungen der Industrie voll Rechnung tragen. Außerdem ist ihr Einsatz in umweltfreundlichen Systemen durch den Betrieb mit gefilterter, ungeölter Druckluft gemäß der europäischen Vorschriften für den Umweltschutz geeignet.

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: - 20 ÷ +80°C

Medium: gefilterte, geölte oder ungeölte Druckluft

Konstruktionseigenschaften

Zylinderrohr aus Strangpreßprofil in

Aluminiumlegierung, innen und außen eloxiert, 15 - 18 μm

Zylinderköpfe demontierbar

Kolben mit Permanentmagnetring aus Plastoferrit (auf Anfrage für Ø 16 \div 100)

Kolbendichtung aus verschleißfester Nitrilmischung, geeignet für Betrieb mit oder ohne Schmierung, die Doppellippenform erlaubt eine konstante Verschleißrückgewinnung

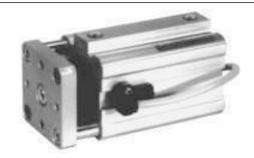
Kolbenstange aus gerolltem Edelstahl (AISI 303) mit Innengewinde (Nippel auf Anfrage)

Führungsbüchse aus selbstschmierendem Material mit Endanschlag

Magnetsensor Serie DH-... (Abschnitt Zubehör Seite 3)

Sonderausführungen

- -Hintere Gelenklasche
- -Nippel
- -Zylinder mit verdrehsicherer Kolbenstange (Ø 16 ÷ 100)
- -Durchgehende hohle Kolbenstange (Ø 20 \div 100)
- -Magnetversion (Ø 16 ÷ 100)
- -Tandemzylinder
- -Führungseinheit Ø 20 ÷ 80 (Abschnitt High-Tech Seite 46)


Entwickelte Kräfte

Sie werden nach den folgenden Formeln errechnet.

Schubkraft	Zugkraft
$Fs = S \cdot p - a$	$Ft = s \cdot p - a$

- p = Speisungsdruck
- S = Schubfläche (cm²)
- s = Zugfläche (cm²)
- a = Reibung (10%)

Zyl. Ø	Ø Kolben- stange (mm)	S (cm²)	s (cm²)	Max. Federreaktionskraft (N)
12	6	1,1	0,8	6,8
16	6	2	1,7	7,8
20	10	3,1	2,3	13,2
25	10	4,9	4,1	19,6
32	12	8	6,9	35,3
40	16	12,6	10,6	45
50	16	19,6	17,6	70,5
63	20	31,1	28	96
80	25	50,3	54,3	119,5
100	25	78,5	73,6	237,2

Typenschlüssel W 100 032 0050 S M Magnetversion (auf Anfrage) Sicherheitsabstand* (auf Anfrage) Hub (in mm) Zylinderdurchmesser (in mm)

Serie

TYP

100 D.W.

101 D.W. durchgehende Kolbenstange

110 D.W. verdrehsichere Kolbenstange*

111 D.W. durchgehende verdrehsichere Kolbenstange*

131 D.W. durchgehende hohle Kolbenstange (ab Ø 20mm)

160 E.W. eingefahrene Kolbenstange

170 E.W. ausgefahrene Kolbenstange

VERSION MIT HINTERER GELENKLASCHE

(nicht für Ø 12)

700 D.W.

760 E.W. eingefahrene Kolbenstange

770 E.W. ausgefahrene Kolbenstange

ZYLINDERDURCHMESSER

12 - 16 - 20 - 25 - 32 - 40 - 50 - 63 - 80 - 100 mm

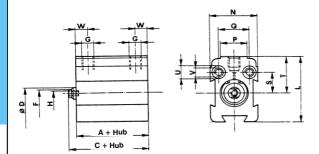
STANDARDHUBLÄNGEN

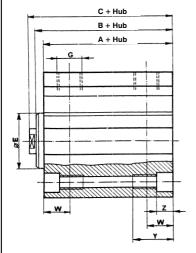
Ø12 - 25 E.W.: 5-10 mm

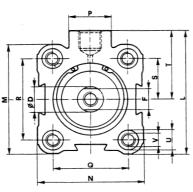
Ø32 - 100 E.W.: 5-10-25 mm

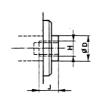
Ø12 - 16 D.W.: 5-10-20-25-30-40-50 mm Ø20 - 100 D.W.: 5-10-20-25-30-40-50-75 mm

D.W. = doppelwirkend **E.W.** = einfachwirkend


* Die Ausführungen mit verdrehsicherer Kolbenstange können (auf Anfrage) mit Sicherheitsabstand gemäß der europäischen Normen EN 294 (Seiten 90-91) ausgestattet werden


Doppelwirkender Zylinder Serie W 100.. / W 100..M

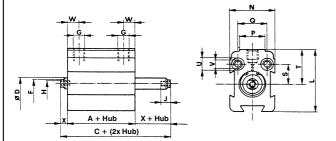

Zylinder Ø 12

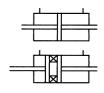


Zylinder Ø 16 ÷ 100

Masse	(Kg)	Hub	"0"
-------	------	-----	-----

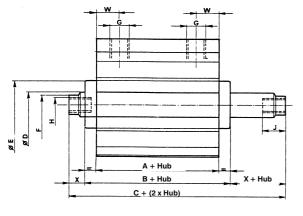
Zyl. Ø	Nicht magnetisch	Magnetisch	Zuschlag pro mm
12	0,045	-	1,2
16	0,074	0,102	1,4
20	0,095	0,12	2
25	0,1355	0,155	2,85
32	0,233	0,292	4,06
40	0,394	0,43	5,47
50	0,39	0,446	6,4
63	0,64	0,772	9,7
80	1,19	1,275	14,85
100	1 72	1 92	19 7

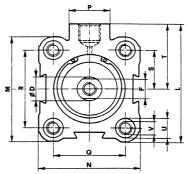

Zyl. Ø	Α	В	C + F	A* IUB	В*	C*	D	E	F	G	н	J	L	М	N	Р	Q	R	s	т	U	N Bohrung	/ Gewinde	w	Y	z
12	32	1	35,5	•	-	-	6	-	5	M5	МЗ	6,5	28,5	ı	20	11	13	-	9	16	6	3,7	M4	8,2	9	3,4
16	32	-	35,5	42	-	45,5	6	-	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	35	ı	42	45	-	52	10	-	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	35	-	42	45	-	52	10	-	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	37	42	49	47	52	59	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	40	47	55	45	52	60	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	40	46,5	55	45	51,5	60	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	42	50,5	59	47	55,5	64	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	52	60	71,5	57	65	76,5	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	52	60	71,5	57	65	76,5	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11


^{*} Magnetversion

Doppelwirkender Zylinder, durchgehende Kolbenstange Serie W 101.. / W 101..M

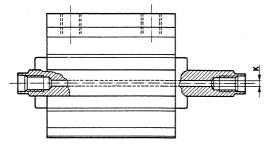
Zylinder Ø 12

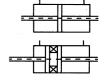




Masse (Kg) Hub "0"

Zyl. Ø	Nicht magnetisch	Magnetisch	Zuschiag pro mm
12	0,055	-	1,4
16	0,086	0,114	1,6
20	0,112	0,137	2,65
25	0,165	0,185	3,5
32	0,295	0,354	5
40	0,5	0,536	7
50	0,478	0,534	8
63	0,79	0,922	12,2
80	1,345	1,43	18,7
100	1,875	2,075	23,6

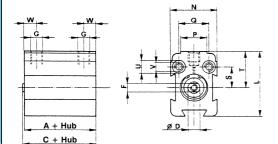

Zylinder Ø 16 ÷100



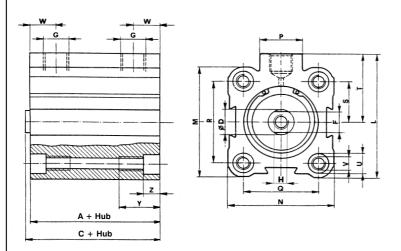
Doppelwirkender Zylinder, durchgehende - hohle Kolbenstange W 131.. / W 131..M (Für Ø 20 ÷ 100)

Zyl. Ø	12	16	20	25	32	40	50	63	80	100
K	-	-	2,5	2,5	3	4	4	6	6	6

Gewicht siehe obenstehende Tabelle


Zyl. Ø	Α	В	с + н		В*	C*	D	E	F	G	н	J	L	м	N	Р	Q	R	s	т	U	\ Bohrung	/ Gewinde	w	x	Υ	z
12	37	-	44	-	-	-	6	-	5	M5	МЗ	6,5	28,5	-	20	11	13	-	9	16	6	3,7	M4	8,2	3,5	9	3,4
16	37	-	44	47	ı	54	6	-	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	3,5	9	3,4
20	40	1	54	50	ı	64	10	1	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	7	10	4,6
25	40	1	54	50	-	64	10	-	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	7	10	4,6
32	42	52	66	52	62	76	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	7	16	5,7
40	45	59	75	50	64	80	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	8	16	5,7
50	45	58	75	50	63	80	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	8,5	16	6,8
63	47	64	81	52	69	86	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	8,5	20	9
80	52	68	91	57	73	96	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	11,5	20	9
100	52	68	91	57	73	96	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	11,5	25	11

^{*} Magnetversion

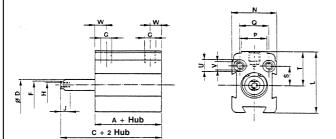

Einfachwirkender Zylinder, eingefahrene Kolbenstange Serie W 160.. / W 160.. M

Zylinder Ø 12

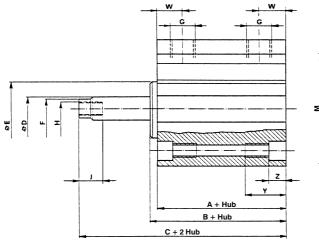
Zylinder Ø 16 ÷ 100

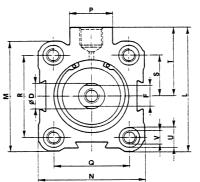
Masse (Kg) Hub "0"

Zyl. Ø	Nicht magnetisch	Magnetisch	Zuschlag pro mm
12	0,038	-	1,2
16	0,059	0,079	1,4
20	0,07	0,095	2
25	0,096	0,116	2,85
32	0,194	0,253	4,06
40	0,326	0,362	5,47
50	0,322	0,378	6,4
63	0,533	0,715	9,7
80	1,02	1,105	14,85
100	1.49	1.69	19.7


						•	-			-	-		i								•		
Zyl.	Α	С	Α*	C*	D	F	G	н	١.	١.	м	N	Р	Q	R	s	т	U	1	/	w	v	z
Ø		+ F	IUB		U	Г	ď	п	J	-	IVI	IN	Р	Q	n	3	'	U	Bohrung	Gewinde	VV	ľ	_
12	27	28	-	-	6	5	M5	МЗ	6,5	28,5	-	20	11	13	-	9	16	6	3,7	M4	8,2	9	3,4
16	22	23	37	38	6	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	25	26	40	41	10	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	25	26	40	41	10	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	32	33	47	48	12	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	35	36	45	46	16	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	35	36	45	46	16	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	37	39	47	49	20	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	47	53	57	63	25	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	47	53	57	63	25	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11

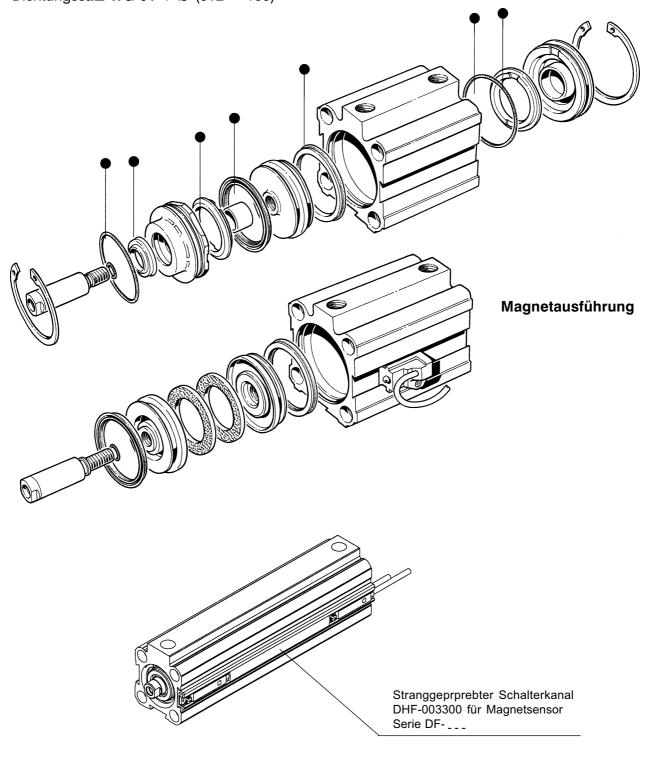
* Magnetversion


Einfachwirkende Zylinder, ausgefahrene Kolbenstange Serie W 170.. / W 170.. M

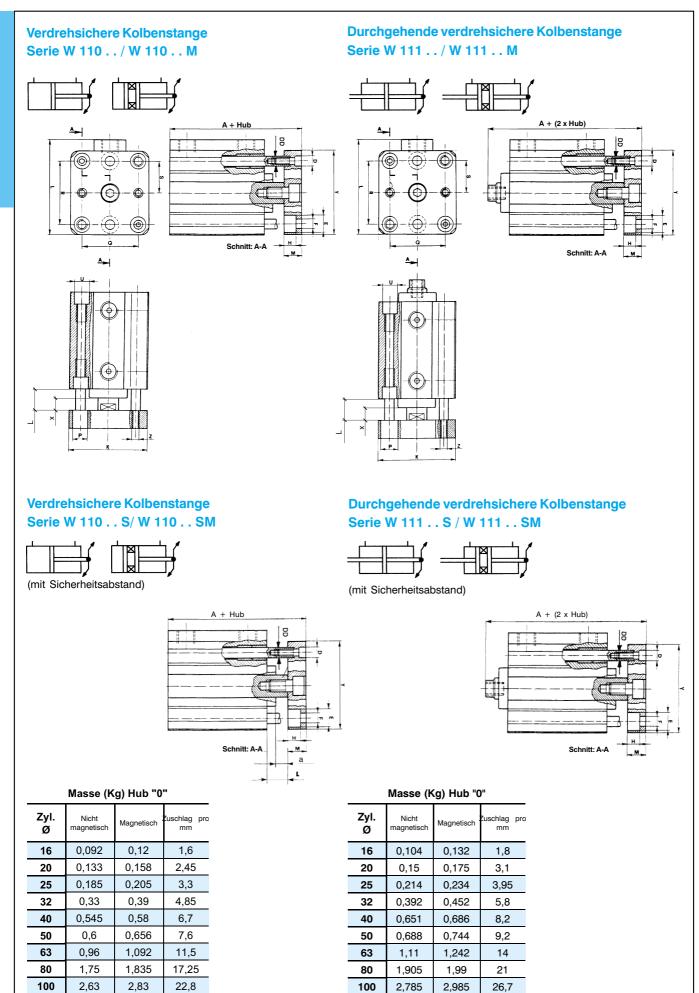

Zylinder Ø 12

Zylinder Ø 16 ÷ 100

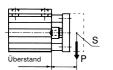
Masse (Kg) Hub "0"

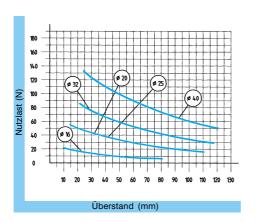

Zyl. Ø	Nicht magnetisch	Magnetisch	Zuschlag pro mm
12	0,045	-	1,2
16	0,7	0,098	1,4
20	0,86	0,111	2
25	0,122	0,142	2,85
32	0,212	0,271	4,06
40	0,366	0,402	5,47
50	0,352	0,408	6,4
63	0,59	0,772	9,7
80	1,104	1,189	14,85
100	1,576	1,776	19,7

			•			•																				
Zyl. Ø	Α	В	с + н	A* UB	В*	C*	D	E	F	G	Н	7	L	М	N	P	Ø	R	s	Т	U	N Bohrung	/ Gewinde	w	Y	z
12	32	1	35,5	-	-	-	6	-	5	M5	МЗ	6,5	28,5	ı	20	11	13	•	9	16	6	3,7	M4	8,2	9	3,4
16	27	1	30,5	42	-	45,5	6	ı	5	M5	МЗ	6,5	31	28	28	11	20	20	10	17	5,8	3,7	M4	6,5	9	3,4
20	30	1	37	45	-	52	10	ı	8	M5	M5	10	35	32	32	11	22	22	11	19	7,5	4,6	M5	7	10	4,6
25	30	1	37	45	-	52	10	ı	8	G 1/8	M5	10	44,5	39	37	18	26	28	14	25	7,5	4,6	M5	7,5	10	4,6
32	32	37	44	47	52	59	12	23	10	G 1/8	M6	12	54	48	45	18	32	36	18	30	8,5	5,55	M6	9	16	5,7
40	35	42	50	45	52	60	16	29,5	13	G 1/8	M8	14	60	54,5	54,5	18	40	40	20	33	8,5	5,55	M6	9,5	16	5,7
50	35	41,5	50	45	51,5	60	16	35,5	13	G 1/4	M8	14	72	64	64	22	50	50	25	40	10,5	7,4	M8	10	16	6,8
63	37	45,5	54	47	55,5	64	20	43	17	G 1/4	M10	15	88	80	80	22	62	62	31	48	13,5	9,3	M10	10	20	9
80	47	55	66,5	57	65	76,5	25	50	22	G 3/8	M12	20	110	100	100	26	82	82	41	60	13,5	9,3	M10	15	20	9
100	47	55	66,5	57	65	76,5	25	56	22	G 3/8	M12	20	134	124	124	26	103	103	51,5	72	16,5	11,2	M12	15	25	11


- * Magnetversion
- ◆ Bei Wert C den Hub 2 x berücksichtigen

Basiskomponenten • Dichtungssatz WG-01 + \emptyset (012 \div 100)





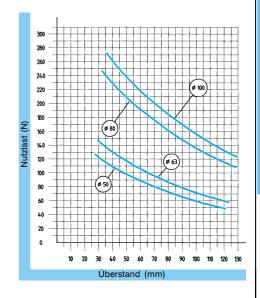
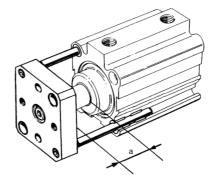


Diagramm Nutzlast/Überstand

S = Nutzlastschwerpunkt P = Nutzlast (N)

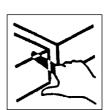


Maximale Abmessungen, Zylinder mit verdrehsicherer Kolbenstange

Zyl. Ø	х	L	W110 A + Hub	W111 A + (2 x Hub)	W110M A* + Hub	W111M A* + (2 x Hub)	D	D D	E	F	н	K	м	Р	Q	R	s	Y	z
16	3,5	3,5	42,5	51	52,5	61	6	4	6	3,5	3,5	27,5	7	6	20	20	10	27,5	МЗ
20	7	7	50	62	60	72	7,5	6	7,5	4,5	4,5	31,5	8	7,5	22	22	11	31,5	M4
25	7	7	50	62	60	72	7,5	6	7,5	4,5	5	36	8	7,5	26	28	14	38	M4
32	7	12	59	76	69	86	9	8	10	5,5	6	44,5	10	10	32	36	18	47,5	M4
40	8	15	65	85	70	90	10,5	10	10	5,5	6	53,5	10	10	40	40	20	53,5	M5
50	8,5	15	67	87	72	92	10,5	10	11	6,5	7	63,5	12	11	50	50	25	63,5	M6
63	8,5	17	71	93	76	98	13,5	12	14	9	9	79,5	12	15	62	62	31	79,5	M6
80	11,5	19,5	85,5	105	90,5	110	13,5	14	14	9	9	99,5	14	15	82	82	41	99,5	M8
100	11,5	19,5	87,5	107	92,5	112	16,5	16	16,5	10,5	10,5	123,5	16	17	103	103	51,5	123,5	M8

^{*} Magnetversion

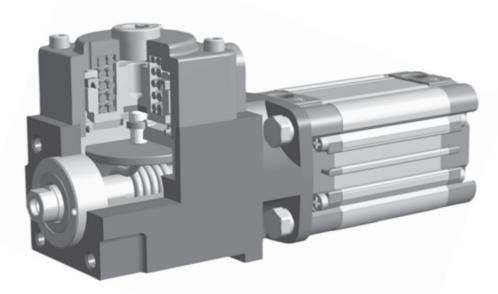
Maximale Abmessungen, Zylinder mit verdrehsicherer Kolbenstange und Sicherheitsabstand



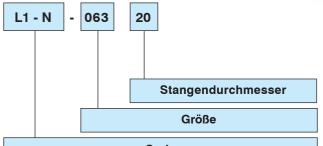
Zyl. Ø	W110 A + Hub	W111 A + (2 x Hub)	W110M A* + Hub	W111M A* + (2 x Hub)	L	а
16	67,5	76	77,5	86	28,5	28,5
20	70	82	80	92	27	27
25	70	82	80	92	27	27
32	79	96	89	106	32	27
40	85	105	90	110	35	28
50	87	107	92	112	35	28,5
63	91	113	96	118	37	28,5
80	100,5	120	105,5	125	34,5	26,5
100	102,5	122	107,5	127	34,5	26,5

ANMERKUNG: für fehlende Werte siehe Versionen ohne Verdrehsicherung

Sicherheitsabstand zur Unfallverhütung gemäß Vorschrift EN 294.


Ein Produkt, das den gewohnten und traditionellen Charakter der UNIVER Feststelleinheit mit einem neuen und revolutionären "elastischen Herz" vereint und das die schon ausgezeichneten Leistungen unter allen Gesichtspunkten verbessert: maximale Feststellkraft, ausgezeichnete Ansprechzeit, sehr hohe beseitigbare kinetische Energie, hohe Feststellwiederholbarkeit, ausgezeichnete Stoß- und Schwingungsbeständigkeit

TECHNISCHE DATEN



Typenschlüssel

Serie

SERIE

 1 Mechanische Feststelleinheit für reduzierten Kolbenstangenüberstand Ø 16-20-25 Mechanische Feststelleinheit für reduzierten Kolbenstangenüberstand und ISO Ø 32 ÷ 125

ZYLINDERDURCHMESSER

Ø 16 ÷ 125

STANGENDURCHMESSER

Ø 6 ÷ 32

Medium: gefilterte, geölte oder ungeölte Druckluft

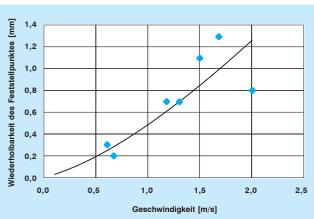
Betriebsdruck: 4 ÷ 10 bar

Umgebungstemperatur: -20 $^{\circ}$ ÷ 80 $^{\circ}$ C

BESONDERHEITEN

- * ausgelegt nur für Stangen aus verchromtem Stahl
- * voll austauschbar mit der vorhergehenden Serie
- kein Problem mit Laständerungen oder plötzlich auftretenden Lasten
- die neue Serie funktioniert auch problemlos mit Kolbenstangen oder Führungsstangen, die mit Öl verschmutzt sind
- * die Sicherheitsvorschriften werden in jeder Beziehung befolgt; der Luftdruck kann nur zum Lösen der Vorrichtung verwendet werden.

Zylinderdurchmesser (mm)	16	20	25	32	40	50	63	80	100	125
Kolbenstangendurchmesser (mm)	6	8	10	12	16	20	20	25	25	32
Pneumatischer Anschluß					G ·	1/8				
Masse kg	0,43	0,43	0,43	0,78	1	1,50	2,30	4	6,70	10,70



Eine Feder aus speziellem Stahl, mit FEA (Finite Element Analysis) entwickelt, in Verbindung mit den fortschrittlichsten CAD Techniken stellen das Herz dieser neuen Feststellvorrichtung dar, die außer dem bewährten Feststellvermögen und der ausgezeichneten Wiederholbarkeit ein sanftes Abbremsen der bewegten Masse erlauben.

Wesentliche Leistungen und Eigenschaften:

Größe oder Durchmesser des gleichwertigen Zylinders	16 (Kolbenstange 6)	20 (Kolbenstange 8)	25 (Kolbenstange 10)	32 (Kolbenstange 12)	40 (Kolbenstange 16)	50 (Kolbenstange 20)	63 (Kolbenstange 20)	80 (Kolbenstange 25)	100 (Kolbenstange 25)	125 (Kolbenstange 32)					
Statische Feststellkraft [N]	200	314	490	800	1260	2000	3100	5000	7850	12300					
Druck auf den gleichwertigen Zylinder [bar]	10	10	10	10	10	10	10	10	10	10					
Dynamische Bremskraft bei 1 m/s		40 % der statischen Feststellkraft													
Ansprechzeit bei 6 bar [ms]	12	12	15	20	20	25	25	30	30	40					
Wiederhol barkeit des Feststellpunktes			< 1 mi	m bei 1 m/s (siehe nachs	tehende Ku	rve)								
Schwingungsbeständigkeit			10 gr	. (10-55 Hz) 3	0 Minuten a	uf jeder Ach	se								
Stoßfestigkeit [J]	2	3	4	5	8	11	15	21	29	40					
Min. Lösungsdruck [bar]*					4										

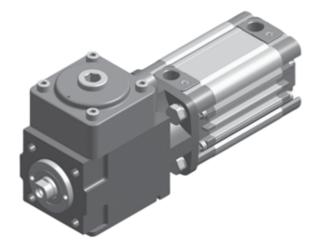
^{*} Bei Lösungsdruckwerten unter 4 bar ist das Verhalten der Feststelleinheit nicht voraussehbar.

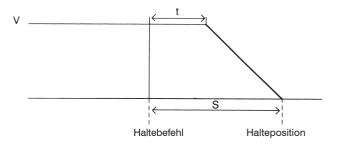
Bremsweg

Für einige Anwendungen ist es erforderlich, den Weg zu kennen, den die Kolbenstange in der Zeit zwischen dem Haltebefehl und dem Erreichen der Halteposition zurücklegt. Der Weg (S) hängt von den folgenden Faktoren ab:

V = Geschwindigkeit im Augenblick des Haltebefehls in m/s

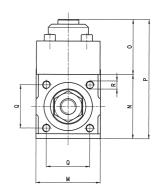
t = Ansprechzeit des Feststellsystems in Sekunden (ca. 0,03 s)

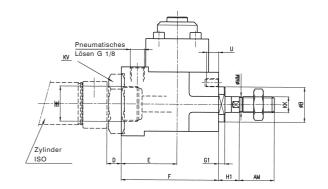

m = Bewegte Masse in kg

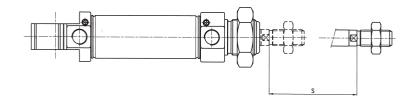

f = Bremskraft unter dynamischen Bedingungen in N

und ist das Ergebnis folgender Formel:

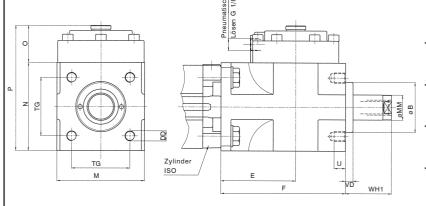
$$S = (V \cdot t) + \frac{m V^2}{2 f}$$


Beispiel: Feststelleinheit Größe 40, mit 10 kg bewegter Masse und einer Geschwindigkeit von 0,7 m/s



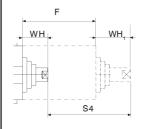


Feststelleinheit für Mikrozylinder Ø 16-20-25 mm


Zusatzlänge zur Standardkolbenstange

-	Zyl. Ø	АМ	В			KV	М	ММ	N	0	Р	Q	R	s	U					
	16	16	16	M16 x 1,5	10	35	61	1,5	7	M6 x 1	es. 24	40	6	40	34,5	74,5	27	M5	55	7,5
	20	20	22	M22 x 1,5	10	35	61	4	9	M8 x 1,25	es. 32	40	8	40	34,5	74,5	27	M5	55	7,5
	25	22	22	M22 x 1,5	10	35	61	4	13	M10 x 1,25	es. 32	40	10	40	34,5	74,5	27	M5	55	7,5

Feststelleinheit für Kompaktzylinder STRONG Ø 32 \div 63 mm

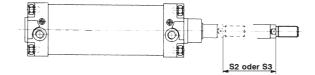

Befestigungsschrauben Dübel UNI 5973 Unterlegsscheibe und Mutter UNI 5589

Zyl. Ø	Kleinteile	Anzahl	Мав	Artikelnr.
	Dübel	4	M6x30	AZ4-VS0630
32	Unterlegscheibe	4	6,4 x 16	AZ4-SR06,41,6
	Mutter	4	M6x1	AZ4-SO0064
	Dübel	4	M6x30	AZ4-VS0630
40	Unterlegscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
	Mutter	4	M6x1	AZ4-SO0064
	Dübel	4	M8x40	AZ4-VS0840
50	Unterlegscheibe	4	8,4 x 1,6	AZ4-SR841,6
	Mutter	4	M8x1,25	AZ4-SH08125
	Dübel	4	M8x40	AZ4-VS0840
63	Unterlegscheibe	4	8,4 x 1,6	AZ4-SR8,41,6
	Mutter	4	M8x1,25	AZ4-SH08125

Ø	В	DD	E	F	M	MM	N	0	Р	TG	U	VD	WH1
32	30	M6	54,5	84	50	12	50	29,5	79,5	32,5	10	6	14
40	35	M6	58	90	58	16	58	29,5	87,5	38	9	6	14
50	40	M8	60	100	70	20	70	29	99	46,5	10	6	18
63	45	M8	65	110	85	20	85	37	122	56,5	13	6	18

Zusatzlänge zur Standardkolbenstange mit ISO Überstand

	Zyl. Ø	WH	F	WH,	S4
ĺ	32	14	84	26	96
	40	14	90	30	106
ĺ	50	18	100	37	119
Ī	63	18	110	37	129

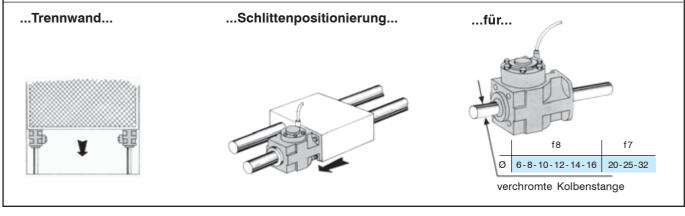


Feststelleinheit für Zylinder ISO Ø 32 ÷ 125

Überstand nach ISO Reduzierter Überstand Pneumatisches Lösen G 1/8 Zylinder ISO T-4 durchgehende Bohrungen

Zusatzlänge zur Standardkolbenstange

- S₁ für Abmessungen nach ISO
- S2 für reduzierte Abmessungen



Zyl. Ø	АМ	В	DD	E	F	H1	KK	М	ММ	N	0	Р	S1	S2	TG	U	VD	wн
32	22	30	M6	54,5	84	16	M10 x 1,25	50	12	50	29,5	79,5	85	75	32,5	10	6	26
40	24	35	M6	58	90	15	M12 x 1,25	58	16	58	29,5	87,5	90	75	38	9	6	30
50	32	40	M8	60	100	17	M16 x 1,5	70	20	70	29	99	100	80	46,5	10	6	37
63	32	45	M8	65	110	17	M16 x 1,5	85	20	85	37	122	110	90	56,5	13	6	37
80	40	45	M10	75	125	21	M20 x 1,5	100	25	100	40,5	140,5	125	100	72	16	8	46
100	40	55	M10	90	152	26	M20 x 1,5	116	25	120	59	179	150	125	89	18	8	51
125	54	60	M12	112,5	185	35	M27 x 2	145	32	145	62	207	185	155	110	22	9,5	65

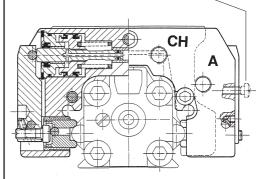
Sechskantschraube UNI 5739 und Unterlegsscheibe UNI 6592 zur Befestigung der Feststelleinheit am ISO-Zylinder.

Zyl. Ø		Anzahl	Мав	Тур
32	Schrauben	4	M6 x 16	AZ4-VE0616
32	Unterlegsscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
40	Schrauben	4	M6 x 20	AZ4-VE0620
40	Unterlegsscheibe	4	6,4 x 1,6	AZ4-SR06,41,6
50	Schrauben	4	M8 x 20	AZ4-VE0820
30	Unterlegsscheibe	4	8,4 x 1,6	AZ4-SR08,41,6
63	Schrauben	4	M8 x 25	AZ4-VE0825
00	Unterlegsscheibe	4	8,4 x 1,6	AZ4-SR08,41,6
80	Schrauben	4	M10 x 30	AZ4-VE1030
80	Unterlegsscheibe	4	10,5 x 2	AZ4-SR10,52,0
100	Schrauben	4	M10 x 30	AZ4-VE1030
100	Unterlegsscheibe	4	10,5 x 2	AZ4-SR10,52,0
125	Schrauben	4	M12 x 35	AZ4-VE1235
123	Unterlegsscheibe	4	13 x 2,5	AZ4-SR13,02,5

...andere Anwendungsbeispiele für die Feststelleinheit...

Feststelleinheit

Die UNIVER Feststelleinheit für kolbenstangenlose Zylinder hat die Funktion, den Schlitten in einem beliebigen Punkt des Hubs festzuhalten und ihre Feststellpräzision ist gut.

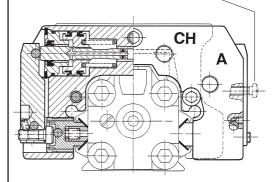

Sie kann wahllos auf beiden Seiten des Schlittens montiert werden und ihre mechanische Bremskraft kann mit Hilfe einer eventuellen zusätzlichen pneumatischen Steuerung weiter verstärkt werden.

Betriebsmedium: gefilterte Druckluft,

mit oder ohne Schmierung Betriebsdruck: 4,5 ÷ 10 bar Betriebstemperatur: -20° ÷ 80°C

Feststellung für Serie S5

Manuelles Lösen Schraube M 5x12



Maximale Rückhaltekraft (N)

Zyl. Ø	
25	810
32	1185
40	825
50	1235

Feststellung für Serie VL1

Manuelles Lösen Schraube M 5x12

Maximale Rückhaltekraft (N)

Zyl. Ø	
25	520
32	745
40	1465
50	2365

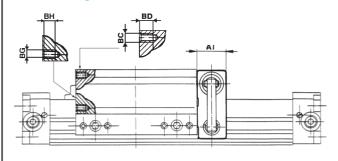
BESONDERE EIGENSCHAFTEN

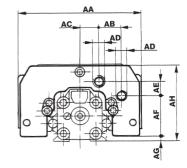
- * Mindestlösedruck 4,5 bar
- * Schlittenblockierung in beiden Richtungen
- * Einfache Montage, auf beiden Seiten der Feststelleinheit möglich
- * Manuelles Lösen, permanent, durch Festschrauben von 2 M5 Schrauben

Zyl.	Ø	25	32	40	50
A =	СН	M5	(G 1/8	3

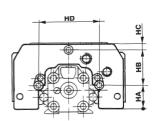
A = Lösen Ch = pneumatische Feststellung

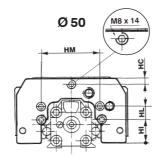
* Serienmäßig in einer einzigen Version lieferbar: Feststellen mit mechanischen Federn, die den Schlitten in Abwesenheit des Druckluftsignals blockieren (1). Zur Verstärkung der Feststellkraft ist dieses Modell schon für die zusätzliche pneumatische Steuerung (2) ausgelegt.



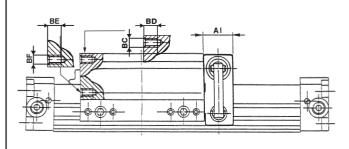


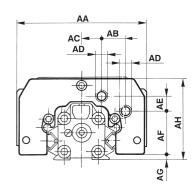
Feststellung für Serie S5



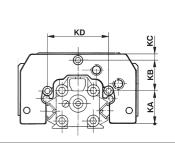

															iviasse K	9	
Zyl. Ø	AA	AB	AC	AD	ΑE	AF	AG	AH	ΑI	BC	BD	BG	вн	Hub "0"+	Feststell-	-Gesamt	Artikelnr.
															ung		
25	120	24,5	12,5	M5	16,5	34,5	5	71,5	32	M6	15	M6	15	1,625	0,35	1,975	L6 - S5025
32	132	25,3	17	G 1/8	16,2	42,3	6,5	81,5	32	M6	15	M6	15	2,775	0,46	3,235	L6 - S5032
40	150	26	17	G 1/8	18,2	58,3	10	106	40	M6	15	M6	15	6,095	0,82	6,915	L6 - S5040
50	164	26	20	G 1/8	19,8	72,5	12,7	125,7	51	M8	16	M6	15	10,03	1,45	11,480	L6 - S5050

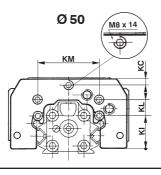
Maße für die Befestigung


Zyl. Ø	НА	НВ	нс	HD	н	HL	нм
25	24,7	34,8	7	59,5	-	-	-
32	27	41,5	6,5	68	-	-	-
40	45,3	43,8	6,9	81,5	-	-	-
50	-	-	12	-	36,5	22,5	96



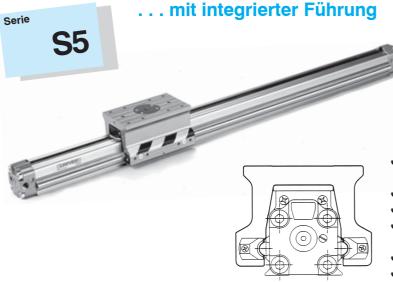
Feststellung für Serie VL1




															Masse kg		
Zyl. Ø	AA	AB	AC	AD	AE	AF	AG	АН	AI	ВС	BD	BE	BF	Hub "0"	+ Feststel- lung	=Gesamt	Artikelnr.
25	120	24,5	12,5	M5	16,5	34,5	7,1	73,6	32	M6	10	M6	10	2,095	0,35	2,445	L6 - V1025
32	132	25,3	17	G 1/8	16,2	42,3	6,5	81,5	32	M6	10	M6	10	3,125	0,46	3,585	L6 - V1032
40	150	26	17	G 1/8	18,2	58,3	9	105	40	M6	15	M6	15	6,43	0,82	7,25	L6 - V1040
50	164	26	20	G 1/8	19,8	72,5	12,7	125,7	51			M6	12	10,85	1,45	12,3	L6 - V1050

Maße für die Befestigung

Zyl. Ø	KA	KB	кс	KD	KI	KL	KM
25	31,5	28	7	52	-	-	-
32	35	33,5	6,5	64	-	-	-
40	45,3	43,8	6,9	81,5	-	-	-
50	-	-	12	-	36,5	22,5	96


Ø 25 - 32 - 40

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminiumextrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Verschiedene Speisungsmöglichkeiten der Zylinderköpfe.
- ✓ Verschiedene Schlittenausführungen.
- ✓ Hohe Translationsgeschwindigkeit 1 ÷ 3 m/s.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminium extrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Flexibles Führungssystem.
- ✓ Schlittengleiten mit Plastik-Führungsschuhen auf Stahlstangen.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 1,5 m/s.
- Möglichkeit zum Anbau einer Feststelleinheit.

- ✓ Ø 16 ÷ 50 mm mit Profil aus Aluminium extrusion.
- ✓ Hübe bis zu 6 m.
- ✓ Schwere Präzisionsausführung.
- ✓ Starres Führungssystem.
- ✓ Schlittengleiten auf Kugellager.
- ✓ Translationsgeschwindigkeit 0,2 ÷ 2 m/sec.
- Möglichkeit zum Anbau einer Feststelleinheit.

TECHNISCHE DATEN

Betriebsdruck: 3 - 10 bar max

Umgebungstemperatur: -20° ÷ +80°C

Medium: gefilterte Druckluft, auch ungeölt bis Hub 500 mm

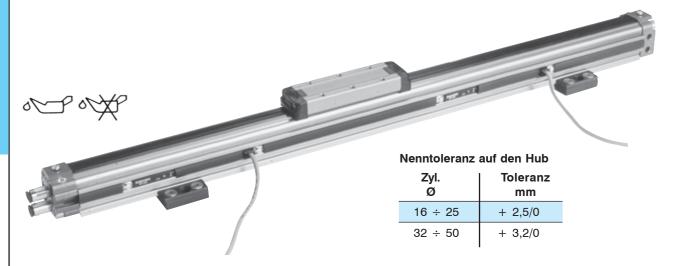
Durchmesser: Ø 16 - 25 - 32 - 40 - 50 mm Standardhublängen: bis 5 m (Ø 16 mm) bis 6 m (Ø 25 ÷ 50 mm)

Mindestgeschwindigkeit mit einheitlicher Translation: 7 \div 20 mm/s

Translationsgeschwindigkeit: 3 m/s (max)

Schlittentypen: Standard, mittellang, lang, doppelt mittellang Integrierte Führungen: Serie S5: runde Stangen aus Stahl

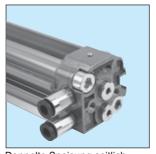
Serie VL1: Stahllamellen 90°


Externe Schlittengleitung:Serie S5: mit

Kunsstoffgleitschuhen

Serie S5: auf Kungellagern

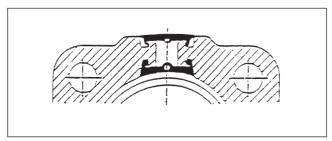
Ausführungen auf Anfrage


- Magnetausführung für Serie S1 (ausgeuommen Ø 16 Standardmagnetausführung); für Seria S5 ist eine spezielle Magnethalterung Serie DKS vorgesehen (Abschnitt Zubehör Seite 6-V)
- Magnetsensor Serie DH-... DF-... (Ø 16) (Abschnitt Zubehör Seite 2-V)
- Führungseinheit mit Standardschlitten oder langen Schlitten für Seite S1 (Serie J30 - J31) Seite 47
- Feststelleiuheit für Serie S5 VL1 (Serie L6) Seite 7.

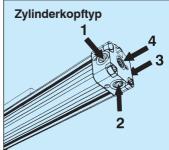
Die **Zylinderköpfe** sind aus Leichtaluminium-Druckguß und ermöglichen verschiedene Anschlußlösungen (siehe untenstehende Zeichnung).

Das besondere Befestigungssystem der Bänder erlaubt Montage und Demontage ohne Schlüssel und ohne irgendeine Regulierung der Verschraubung.

Ø 16 mm



Doppelte Speisung seitlich



Doppelte Speisung hinten

Längsabdichtungssystem. Die pneumatische Abdichtung wird durch ein axiales, elastisches, durch einen Kevlar-Einsatz verstärktes Band und mit einer ähnlichen An triebsgrenze von ca 2 % gewährleistet. Dieses System erlaubt eine Maßstabilität, auch bei hoher Translationsgeschwindigkeit. Der äußere Schutz besteht aus einem thermoplastischen Band, dessen Innenteil mit Kevlar verstärkt ist.

Ø 25 ÷ 50 mm

- 0 = kein Anschluß (nur linker Zylinderkopf, wenn die Kammern von rechts angeschlossen sind)
- 1 = seitlich
- 2 = bodenseitig
- 3 = hinten
- **4** = beide Kammern von einem Zylinderkopf aus

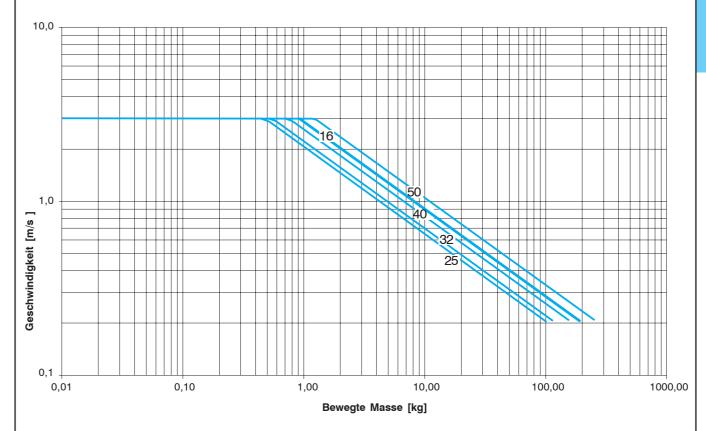
Die Kolbenschlitteneinheit hat ein gezogenes Profil aus Aluminiumlegierung mit Führungsschuhen aus thermoplastischem Material. Die Kolbendichtung in Doppellippenform gewährt eine hohe Verschleißfestigkeit; auf Anfrage kann der Kolben mit einem Permanentmagneten ausgerüstet werden (nur Serie S1). Das Zylinderrohr hat ein gezogenes Profil aus

Aluminiumlegierung und ist innen und außen eloxiert.

Einstellbare pneumatische Dämpfung: je zwei Drosselschrauben pro Zylinderkopf erlauben eine bessere Regulierung der Kolbendämpfung.

Mechanische Endanschläge vermindern die mechanische Beanspruchung und senken somit den Betriebslärmpegel (< 50 dB).

Prüfung und Kontrolle der Dämpfung


In einem System mit bewegten Massen, wie es beim Einsatz von kolbenstangenlosen Zylindern meist gegeben ist, ist es von großer Bedeutung, die kinetische Energie während des Verzögerungsvorganges bis zum Stillstand zu beherrschen. Unter dieser Voraussetzung ist es als erstes notwendig, die für das jeweilige System am besten geeignete Dämpfung herauszufinden und festzulegen, um zu vermeiden, daß die bewegte Masse (Schlitten mit Last) nicht ungebremst auf die Zylinderköpfe auffährt und somit die Lebensdauer des Zylinders beeinträchtigt. Wenn sich der Schnittpunkt von Last und Geschwindigkeit **unterhalb** der Dämpfungskurve des betreffenden Zylinders befindet, ist die Dämpfung in der Lage, die kinetische Energie zu absorbieren.

Befindet sich der Schnittpunkt jedoch **oberhalb** der Kurve, ist die Dämpfung **nicht imstande**, **die kinetische Energie zu absorbieren**, und es ist daher unbedingt notwendig:

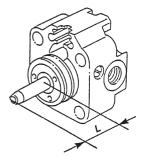
- a) die Last unter Beibehaltung der Translationsgeschwindigkeit zu verringern,
- b) die Geschwindigkeit unter Beibehaltung der Last zu verringern,
- c) einen Zylinder mit größerem Durchmesser zu wählen.

Die Dämpfungskapazität wird im untenstehenden Diagramm in Bezug auf die Endgeschwindigkeit des Schlittens, der sich den Zylinderköpfen nähert, dargestellt.

Dämpfung für Serie S1 - S5 - VL1

Aufgrund dieser Überlegungen, wenn die kinetische Energie nicht von der Zylinderkopfdämpfung absorbierbar ist und wenn es nicht möglich ist, die Parameter zu ändern (A - B - C, auf Seite 46), ist die Anbringung einer zusätzlichen Dämpfung unbedingt notwendig, um vor der Zylinderdämpfung eine Geschwindigkeitsverringerung der Last zu erhalten.

Diese Dämpfung kann sein:


- pneumatisch, mit elektronischem Impuls, Serie LX 7160, von UNIVER geplant und erstellt (Seite 90-91),
- hydraulisch, im Handel erhältlich.

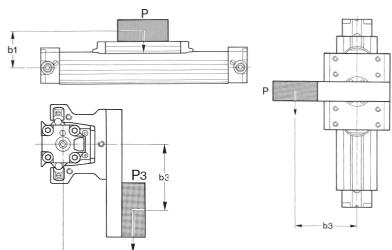
Die Bewegung von Massen führt auf dem Zylinder nicht nur zu konstanten Lasten, aufgrund der Gewichtskraft, sondern auch zu Drucklasten, ausgelöst durch die Trägheitskraft, die in den Beschleunigungsphasen des Kolbens am Anfang und am Ende eines Hubes entstehen.

Daraus resultiert eine typische Arbeitsbeanspruchung, bei der die Art der Last die Lebensdauer der Struktur beeinflußt. Die im folgenden angeführten Lasten beziehen sich auf eine Lebensdauer von 20000 km.

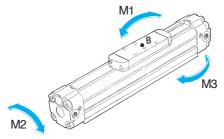
Die angeführten Lasten (auf den Seiten, die den relativen Serien entsprechen) sind die Höchstwerte der Kräfte und der Momente, die während der Beschleunigungsphasen erzeugt werden können. Um die Übereinstimmung einer Anwendung zu bewerten, müssen auch die Trägheitskräfte und die darauffolgenden Momente kalkuliert werden.

Zur Berechnung der Trägheitskräfte muß vor allem die Länge L der Dämpfungsstrecke bekannt sein. Bei Verwendung einer pneumatischen Dämpfung für die Zylinderköpfe ergibt sich:

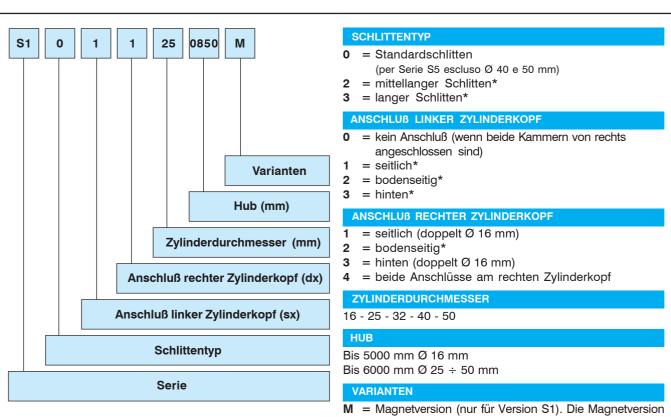
Ø (mm)	L (mm)
16	16,5
25	25,0
32	32,5
40	41,5
50	52,0


Weiter vorgegangen wird mit den üblichen mechanischen Formeln. Soll z.B. eine Masse M (kg) mit einer Geschwindigkeit V (m/s), die mit den Hebelarmen b₁, b₂ und b₃ (mm) in Bezug auf die Längsachse des Kolbens angeordnet ist, bewegt werden, erfolgt die Berechnung der Trägheitskraft F in Längsrichtung und der damit in Beziehung stehenden Momente wie folgt.

$$F(N) = M \cdot a = M \cdot \frac{V^2}{2 \cdot (L \cdot 10^{-3})}$$

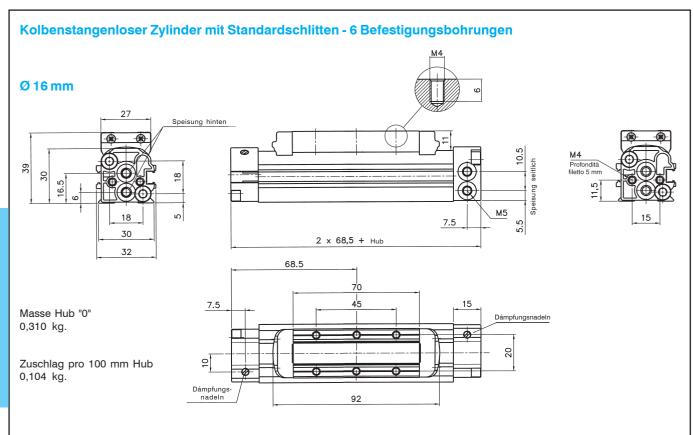

$$M_1 \cdot (Nm) = F \cdot (b_1 \cdot 10^{-3})$$

$$M_2 \cdot (Nm) = M \cdot g \cdot (b_2 \cdot 10^{-3})$$

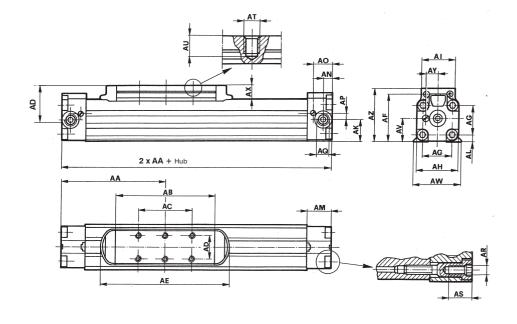

$$M_3 \cdot (Nm) = F \cdot (b_3 \cdot 10^{-3})$$

Während **F**, **M**₁ und **M**₃ sowohl statische als auch Trägheitskomponenten haben können, ist **M**₂ ausschließlich statischer Natur.

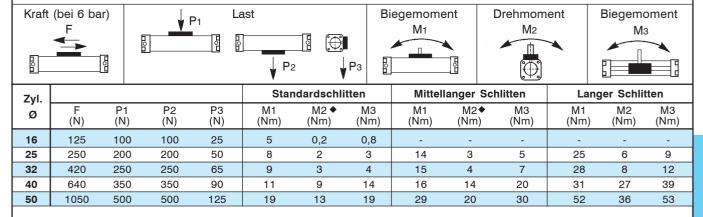
SERIE


- **S1** = Version mit 1 Kammer
- **S5** = Version mit integrierter Führung Führungsschuhe aus Kunststoff

M = Magnetversion (nur für Version S1). Die Magnetversion für die Serie S5 wird durch das Hinzufügen eines Schaltkanals der Serie DKS realisiert, der separat bestellt werden muß (siehe Abschnitt Seite 6)

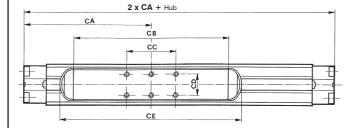

^{*} mit Ausnahme von Ø 16 mm

Ø 25 ÷ 50 mm

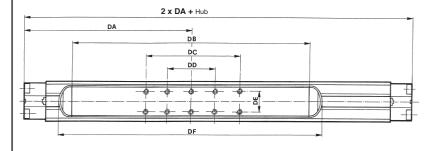


Zyl. Ø	AA	AB	AC	AD	ΑE	ΑF	AG	AH	ΑI	AK	AL	ΑM	AN	AO	AP	AQ	AR	AS	ΑT
25	100	95	50	24	130	48,3	28	40,5	33	20,2	7	24	7,4	18,2	5,7	G1/8	M5	12	M5
32	125	118	65	31	156	57	35	50	40	25,3	8	29	10,3	22,5	7,3	G1/4	M6	15,5	M6
40	150	134	65	31	177	74	44	64	44	33,8	11,8	33	12,5	26,5	8,7	G3/8	M8	20	M6
50	175	164	105	39	211	90,7	55	80	54	41,4	14,7	33	14,2	25,7	11,8	G3/8	M10	20	M8

Zyl. Ø	ΑU	ΑV	AW	AX	AY	ΑZ	Masse Kg Hub "0"	Zuschlang in kg pro 100 mm di Hub
25	9	22,8	42,8	16	12,2	57,6	0,750	0,210
32	9	28	54,5	16	14,2	66,2	1,310	0,325
40	11	37	67	19,5	16,5	85,8	2,600	0,555
50	12	47,7	86	20,5	19,1	103	4,785	0,955



Werte bei statischer Belastung; unter dynamischen Bedingungen muß die Belastung bei Zunahme der Translationsgeschwindigkeit vermindert werden. Das Drehmoment ist das Produkt der Belastung (in Newton) mal Hebelarm (in Metern), der die Entfernung zwischen Belastungsschwerpunkt und Längsachse des Kolbens darstellt. (Technische Merkmale Seiten 11-17)

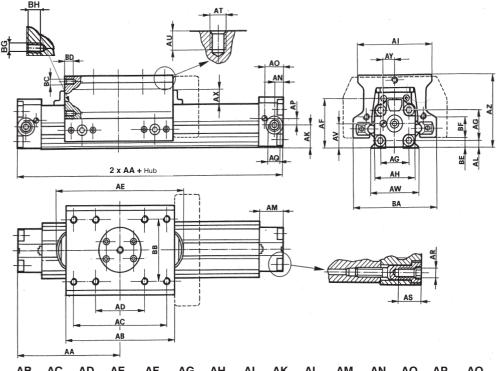

♦ Es wird davon abgeraten, den Zylinder mit großen Belastungen einzusetzen

Mittellanger Schlitten 6 Befestigungsbohrungen für Zylinder Ø 25 \div 50 mm

Zyl. Ø	CA	СВ	СС	CD	CE	Masse (Kg) Hub "0"
25	114,5	125	50	24	160	0,84
32	142,5	153	65	31	191	1,48
40	169	172	65	31	215	2,91
50	205	224	105	39	271	5,55

Langer Schlitten 10 Befestigungsbohrungen für Zylinder Ø 25 ÷ 50 mm

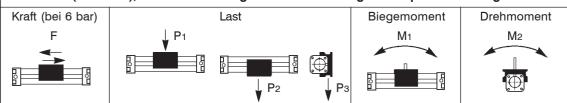
z	yl.Ø	DA	DB	DC	DD	DE	DF	Masse (Kg) Hub "0"
	25	147,5	190	100	50	24	225	1,05
	32	190	248	130	65	31	286	1,93
	40	225	284	130	65	31	327	3,80
	50	277	364	315	105	39	411	7,33


ANMERKUNG: Sollte der kolbenstangenlose Zylinder an starren externen Führungen befestigt werden, **muß** am Schlitten ein Schwenklager (Serie SF - 24 ... siehe Seite 23-II) angebracht werden, damit der Zylinder von der starren tragenden Struktur gelöst wird.

Anderes Zubehör ab Seite 22-II.

Biegemoment

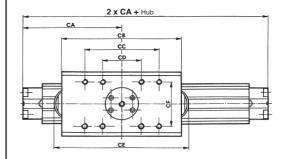
Flexibel geführte kolbenstangenlose Zylinder mit integrierter Führung und Standardschlitten 8 Befestigungsbohrungen



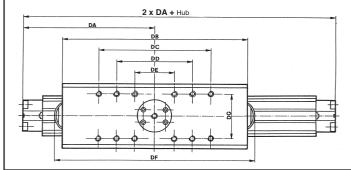
Zyl. Ø	AA	AB	AC	AD	AE	AF	AG	АН	ΑI	AK	AL	AM	AN	АО	AP	AQ	AR	AS	AT
25	100	106	90	50	130	48,3	28	40,5	70	20,2	7	24	7,4	18,2	5,7	G 1/8	M5	12	M6
32	125	140	115	55	156	57,0	35	50	88	25,3	8	29	10,3	22,5	7,3	G 1/4	M6	15,5	M8
40							44	64	90	33,8	11,8	33	12,5	26,5	8,7	G 3/8	M8	20	M8
50							55	80	100	41,4	14,7	33	14,2	25,7	11,8	G 3/8	M10	20	M8

Zyl. Ø	AU	AV	AW	АХ	AY	AZ	ВА	ВВ	вс	BD	BE	BF	BG	вн	Masse Kg Hub "0"	Zuschlag in kg pro 100 mm di Hub
25	10	22,8	42,8	16	12,2	71,8	85	50	M6	15	5,7	24	M6	15	1,625	0,365
32	12	28	57	16	14,2	82,5	100	67,5	M6	15	7	24,5	M6	15	2,775	0,495
40	14	37	67	19,5	16,5	106,6	135	65	M6	15	7	39	M6	15		0,92
50	16	47,7	86	20,5	19,1	123,7	149	76,5	M8	16	7,2	41	M6	15		1,28

Die gestrichelte Linie zeigt die Lage der Festelleinheit an (Befestigungsbehrungen der Feststelleinheit siehe Seite 8-II)


Werte bei statischer Belastung; unter dynamischen Bedingungen muß die Belastung bei Zunahme der Translationsgeschwindigkeit vermindert werden. Das Drehmoment ist das Produkt der Belastung (in Newton) mal Hebelarm (in Metern), der die Entfernung zwischen Belastungsschwerpunkt und Längsachse des Kolbens darstellt.

Zyl. Ø					Star	ndardschl	itten	Mittel	anger Scl	nlitten	Langer Schlitten			
	F	P1	P2	P3	M1 M2 M3			M1	M2	МЗ	M1	M2	МЗ	
	(N)		(N)		(Nm) (Nm) (Nm)			(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	(Nm)	
25	250		400		13 8 16			20	10	25	40	15	50	
32	420		400		20 9 27			30	12	40	55	18	75	
40	640		600		nicht vorgesehen			60	30	80	110	45	150	
50	1050		800		nicht vorgesehen			85	50	110	150	75	210	



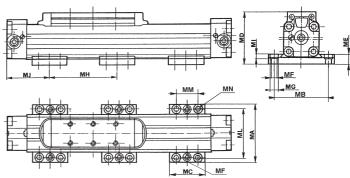
Mittellanger Schlitten 8 Befestigungsbohrungen

Zyl. Ø	CA	СВ	СС	CD	CE	CF	Masse (Kg) Hub "0"
25	114,5	136	90	50	160	50	1,93
32	142,5	175	115	55	191	67,5	3,265
40	169	205	180	75	215	65	6,095
50	205	258	190	80	271	76,5	10,03

Langer Schlitten 12 Befestigungsbohrungen

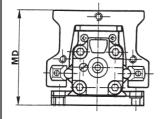

Zyl. 9	Ø DA	DB	DC	DD	DE	DF	DG	Masse (Kg) Hub "0"
25	147,5	201	130	90	50	225	50	2,64
32	190	270	175	115	55	286	67,5	4,65
40	225	317	280	185	75	327	65	8,60
50	277	398	320	200	80	411	76,5	14,04

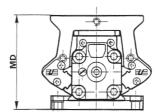
Zubehör ab Seite 22-II.



Befestigungsplatte für Serie S1

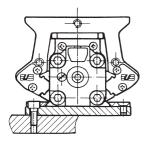
Ø 16 mm


Ø 25 ÷ 50 mm

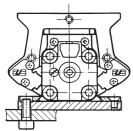

						MD											
Zyl.	ØI	MΑ	MB	MC	S1	S5	VL1	ME	MF	MG	MH MI	MJ	ML*	MM	MN	Masse kg	Artikelnr.
16	6	50	40	30	44,8	-	-	9	M5	8	400 💠 4,5	35	40	-	M6	0,083	SF - 12016
25	5 7	78,5	63,5	50	65,6	79,8	82,3	12	M8	11	500 ♦ 6,5	55	65,5	30	M6	0,310	SF - 12025
32	2	92	77,5	50	74,2	90,5	90,5	12	M8	11	600 🕈 5,5	60	79,5	30	M6	0,340	SF - 12032
40)	117	96	60	95,8	116,6	116	15	M10	14	700 🕈 8	70	96	37,5	M8	0,660	SF - 12040
50) .	136	115	60	113	133,7	136,2	15	M10	14	800 🕈 8	70	115	37,5	M8	0,700	SF - 12050

- ♦ Maximale Abmessungen zur Begrenzung der Durchbiegung des Zylinders unter Eigengewicht und für eine korrekte Befestigung.
- * Für Ø 16-40-50 mm haben MB und ML dieselben Werte

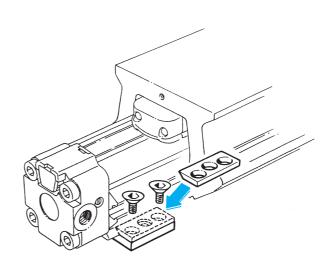
Befestigungsplatte für Serie S5


Befestigungsplatte für Serie VL1

Beispiel zur Befestigung der Platten:


Befestigung mit im Lieferumfang enthaltenen Schrauben ohne Demontage der einzelnen Zylinderteile (gilt für alle Serien).

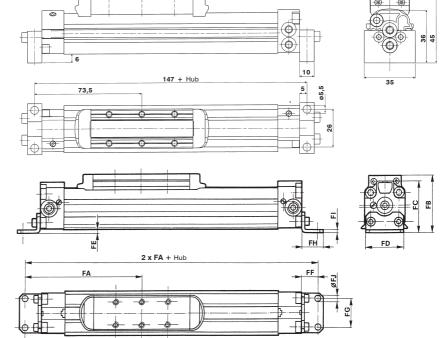
Befestigung oben

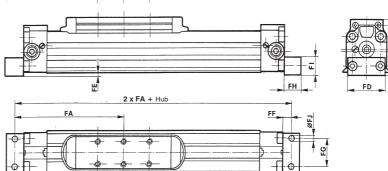


Zyl. Ø	
25 - 32	M6
40 - 50	M8

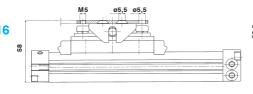
Befestigung unten

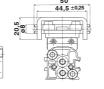
Zyl. Ø	
25 - 32	M8
40 - 50	M10

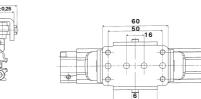


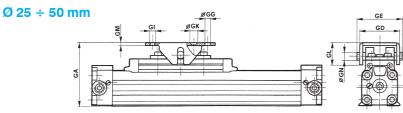


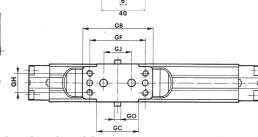
Masse kg 0,015

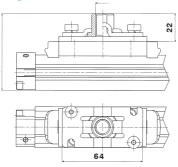




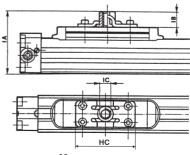

Zyl. Ø	FA	FB	FC	FD	FE	FF	FG	FH	FI	FJ	Masse kg	Artikelnr.
25	116	58,1	48,8	40	0,5	16	27	22	2.5	5,5	0,034	SF - 13025
32	143,5	68,7	59,2	48	2,5	18,5	36	26	3	6,5	0,053	SF - 13032
40	162,5	86,5	74,9	63	0,7	12,5	30	25	25	9	0,116	SF - 13040
50	187,5	104,3	92,4	79	1,3	12,5	40	25	30	9,3	0,170	SF - 13050


Fußbefestigungen werden ausschließlich für kurze Hublängen empfohlen (bis 400 mm)




Zyl. Ø	GA	GB	GC	GD	GE	GF	GG	GH	GI	GJ	GK	GL	GM	GN	GO	Masse kg	Artikelnr.
25	$73,5/\pm2,5$	60	40	$44,5/\pm2,5$	50	50	5,5	25	M5	16	5,5	20,5	3	8	6,15	0,142	SF - 24025
32	89/±4	100	60	56/±4	64	80	5,5	30	M6	40	6,5	30	4	12	8,2	0,362	SF - 24032
40	108,5/±4	100	60	56/±4	64	80	5,5	30	M6	40	6,5	30	4	12	8,2	0,362	SF - 24032
50	nicht vorge	sehen															

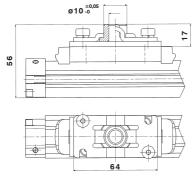
Anschluß mit Innengewinde


Ø 16 mm

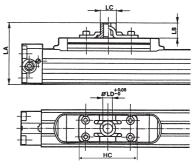
Masse Kg 0,132

M12

Ø 25 ÷ 50 mm



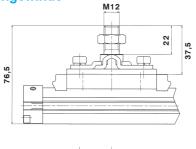
						-1
Zyl. Ø	IA	IB	IC	нс	Masse kg	Artikelnr.
25	75,6	18	M12	64	0,076	SF-26025
32	87,2	21	M14	84	0,157	SF-26032
40	106,8	21	M14	84	0,157	SF-26032
50	nicht	vorge	sehen			

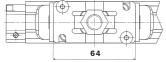

Anschluß ohne Innengewinde

Ø 16 mm

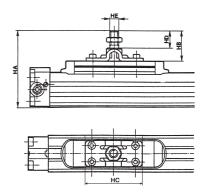
Masse Kg 0,129

Ø 25 ÷ 50 mm

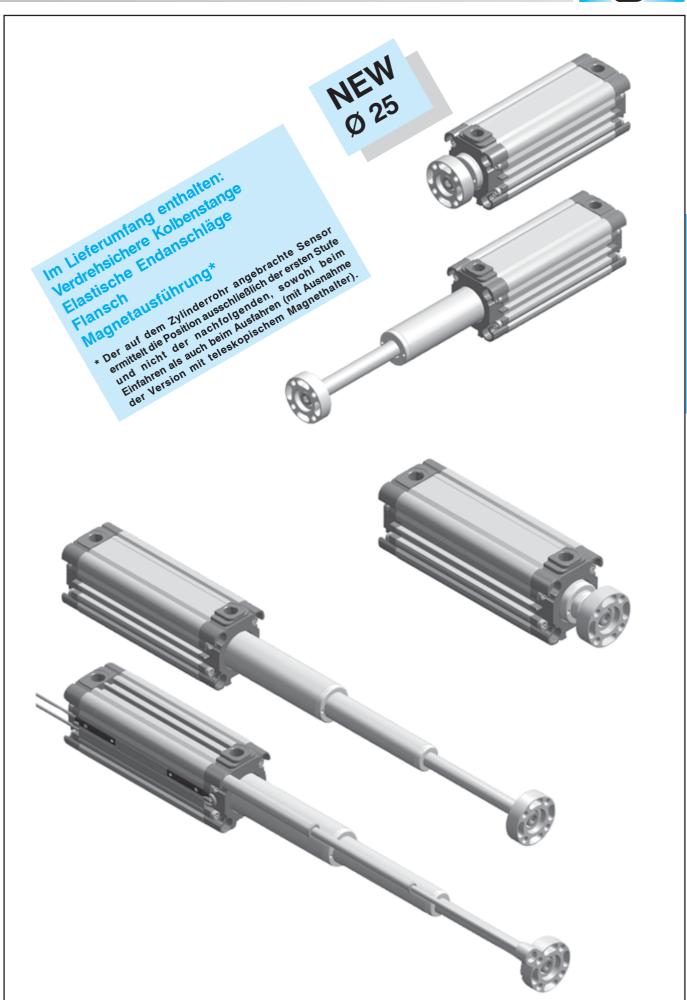



Zyl. Ø	LA	LB	LC	LD	нс	Masse kg	Artikelnr.
25	70,6	13	18	10	64	0,073	SF-28025
32	83,4	17,2	22	12	84	0,152	SF-28032
40	103	17,2	22	12	84	0,152	SF-28032
50	nicht	vorg	esehe	en			

Bolzen mit Außengewinde


Ø 16 mm

Masse Kg 0,160



Ø 25 ÷ 50 mm

Zyl. Ø	на	НВ	нс	HD	HE	Masse kg	Artikelnr.
25	91,1	33,5	64	22	M12	0,105	SF-27025
32	107,7	41,5	84	24,3	M14	0,26	SF-27032
40	127,3	41,5	84	24,3	M14	0,26	SF-27032
50	nicht	vorge	seher	า			

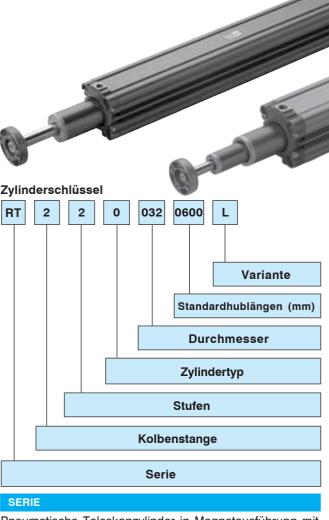
Aufgrund des hohen technologischen Gehalts stellt diese Zylinderserie zweifellos das Produkt mit dem höchsten Grad der Technik und der Entwicklung dar, das von den Technikern des Hauses entwickelt wurde.

Einer der wichtigsten Aspekte betrifft die Einbaumaße: im Vergleich zu einem traditionellen ISO-Zylinder mit gleichem Hub erreicht man eine Reduzierung um ca. 45% (mit einem dreistufigen Zylinder), was dem Kunden eine beträchtliche Einsparung für die Entwicklung und Fertigung der Ausrüstungen erlaubt. Der Zylinder ist in Magnetversion und mit Führungseinheiten lieferbar (nur für die zweistufige Version).

TECHNISCHE DATEN

Betriebsdruck: 1,5 ÷ 10 bar

Umgebungstemperatur: -20°C ÷ 80°C


Betriebsmedium: Druckluft mit oder ohne Schmierung. Zylinderrohr: aus Aluminium, innen und außen eloxiert Verdrehsichere Kolbenstange aus verchromtem Stahl: mit serienmäßig geliefertem Flansch ausgenommen für die Ausführungen mit Kolbenstange mit Außengewinde.

Elastische Endanschläge.

Magnetausführung mit Positionsermittlung, nur für die erste Stufe.

Auf Anfrage:

- Magnetsensor DF-... (Abschnitt Zubehör Seite 2).
- Band zum Abdecken der Drähte des Magnetsensoren. Typ. DHF-002100
- Magnetausführung für zwei- und dreistufige Zylinder ausgelegt nur für das Ablesen des Endhubs (ausgenommen Ø 25 mm)
- Führungseinheit nur für zweistufigen Teleskopzylinder (Seite 55-II)

Pneumatische Teleskopzylinder in Magnetausführung mit verdrehsicherer Kolbenstange, elastischen Endanschlägen und Flansch, Ø 032 \div 063 mm.

KOLBENSTANGE

- 2___ verchromter Stahl
- 1... nichtrostender Stahl

STUFEN

2... zweistufig

3... dreistufig

Durchmesserkombinationen Cil. | \(\alpha \) | \(\alpha \) | \(\alpha \)

Zusammenfassende Tabelle der

Teleskopic- zylinder	einstufig	zweistufig	dreistufig
25	25	16	-
32	32	20	-
40	40	25	16
50	50	32	20
63	63	40	25

ZYLINDERTYP

- 0 = doppelwirkend Bohrungsabstände ISO, Kolbenstange mit Innengewinde
- B = doppelwirkend, Bohrungsabstände ISO, Kolbenstange mit Außengewinde

DURCHMESSER

Zweistufig: Ø 025-032-040-050-063 mm

Dreistufig: Ø 040-050-063 mm

STANDARDHUBLÄNGEN

zweistufig

0100-0120-0160-0180-0200-0300-0400-0500-0600-0700 0800-0900-1000-1100-1200

Max. Hub: Ø 25 0300 mm

Ø 32 **0400 mm** Ø 40 **0600 mm**

Ø 50 **0900 mm**

Ø 63 1200 mm

dreistufig

0150-0180-0210-0240-0270-0300-0360-0450-0600-0750 0900-1050-1200-1500-1800

Max. Hub: Ø 40 1200 mm

Ø 50 **1500 mm**

Ø 63 1800 mm

VARIANTE

= ohne Flansch

L = frei drehende Kolbenstange

M = mit teleskopischem Magnethalter für 2°-3° Stufe.

Zweistufiger Teleskopzylinder Theoretische Kräfte ausgedrückt in N (0,102 kg)

Zweistufiger Teleskop-	Nutzfläche	Betriebsdruck (bar)						
zylinder			2	4	6	8	10	
25	Schubkraft	201	41	82	123	164	205	
	Zugkraft	111	22	43	65	87	108	
32	Schubkraft	314	64	128	192	256	320	
	Zugkraft	201	41	82	123	164	205	
40	Schubkraft	490	100	200	300	400	500	
	Zugkraft	377	77	154	231	308	384	
50	Schubkraft	804	164	328	492	656	820	
	Zugkraft	603	123	246	369	492	615	
63	Schubkraft	1256	256	512	769	1025	1281	
30	Zugkraft	1055	215	430	646	861	1076	

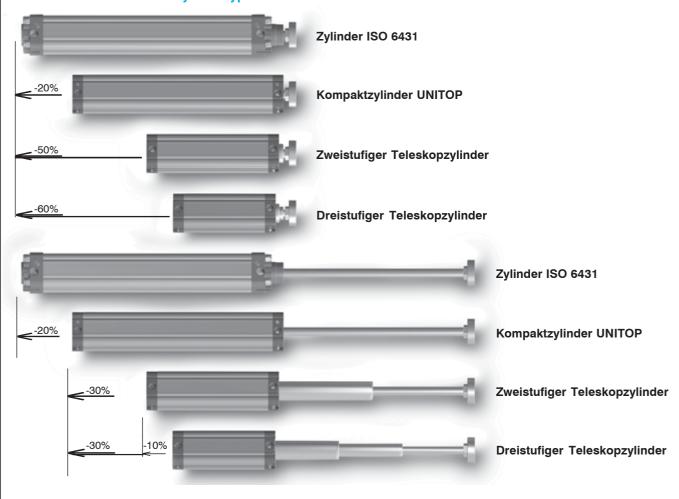
Dreistufiger Teleskopzylinder Theoretische Kräfte ausgedrückt in N (0,102 kg)

Dreistufiger Teleskop- zylinder	Nutzfläche	2	Betriek	sdruck	(bar)	10	
40	Schubkraft	201	41	82	123	164	205
40	Zugkraft	111	22	43	65	87	108
50	Schubkraft	314	64	128	192	256	320
30	Zugkraft	201	41	82	123	164	205
63	Schubkraft	490	100	200	300	400	500
33	Zugkraft	377	77	154	231	308	384

Maximaler Drehmoment [Nm] für verdrehsichere Kolbenstange

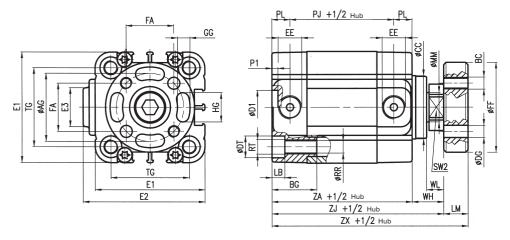
Zyl.	Mor	nent		
Ø	2 stufiq	3 stufiq		
25	0,5	-		
32	0,8	-		
40	1	0,5		
50	2	0,8		
63	3	1		

Nenntoleranzen auf den Hub (mm)

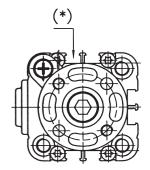

Zyl.	Toleranz							
Ø	2 stufiq	3 stufiq						
25	+ 2/0							
32								
40	+ 3,2/0	+ 4/0						
50								
63								

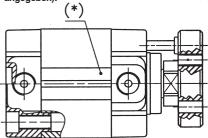
Der Teleskopzylinder arbeitet unter optimalen Bedingungen bei axialer Last, d.h. mit Zylinder in senkrechter Position, nach oben oder nach unten.

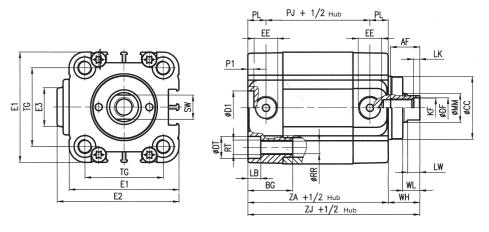
Er kann natürlich auch waagerecht und mit überhängender Last arbeiten; in diesem Fall muß jedoch folgendes beachtet werden:

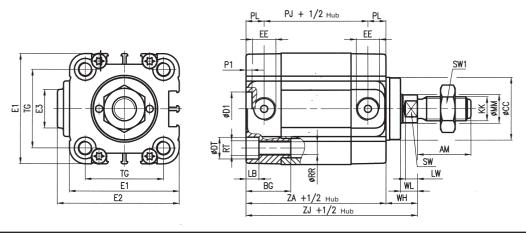

- die maximalen Hublängen müssen um 50 % reduziert werden im Vergleich zu den maximalen Nennhublängen.
- Zylinder mit Führungseinheiten anfordern.
- die Radialbelastung mit anderen Systemen abstützen (Wagen, Gleitschuhe, Gleitführungen)

Das nachstehende Beispiel veranschaulicht das Verhältnis der Einbaumaße zwischen verschiedenen Zylindertypen mit demselben Hub von 300 mm.




Zweistufiger Teleskopzylinder mit Flansch RT220...


Zweistufiger Teleskopzylinder Magnetausführung RT220....M


(*) Achtung: die Magnetsensoren der Serie DF... dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

Zweistufiger Teleskopzylinder ohne Flansch RT 220....l

Zweistufiger Teleskopzylinder mit Kolbenstange mit Außengewinde RT223...

Zyl. Ø 25	AF	Ø AG	АМ	вс	ВG	ø cc	ØD1 H11	Ø DF	Ø DG	Ø DT	E1	E2	E3	EE	FA	Ø FF	GG	HG	KF
25	10	22	22	M5	16	22	2	6,1	5	8	37	39	18	M5	15,6	30	5	9	M6
32	12	28	22	M5	18	26	14	8,2	5	9	46	50,5	16	G1/8	19,8	37	5,2	11	M8
40	12	33	22	M5	18	32	14	8,2	5	9	56	60,5	16	G1/8	23,3	42	5,2	15	M8
50	16	42	24	M6	24	40	18	10,2	6	11	66	70,5	16	G1/8	29,7	52	6,2	19	M10
63	16	50	24	M6	24	48	18	10,2	6	11	79	83,5	38	G1/8	35,4	64	6,2	25	M10

Zyl. Ø	кк	LB	LK	LM	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	SW2	TG	WH	WL	ZA	ZJ	ZX
25	M10X1,25	4,5	1	8	4,5	10	2	32	8	4,2	M5	8	17	-	26	17	7	48	65	73
32	M10X1,25	5,3	2	10	5	12	2,5	43	7,5	5,2	M6	10	17	17	32,5	13	7	58	71	81
40	M10X1,25	5,3	2	10	5	12	2,5	45	7,5	5,2	M6	10	17	19	38	12	7	60	72	82
50	M12X1,25	6,5	2	12	6	16	2,5	46	7,5	6,6	M8	13	19	24	46,5	15	8	61	76	88
63	M12X1,25	6,5	2	12	6	16	2,5	50	7,5	6,6	M8	13	19	24	56,5	15	8	65	80	92

Masse

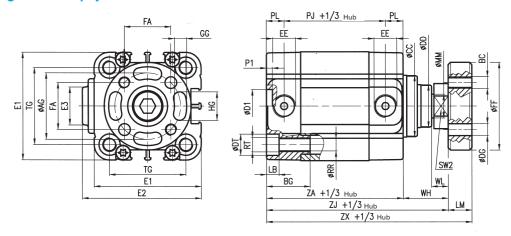
RT220...

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	200	2,45	74,2	1,2
32	270	3,02	124,6	1,4
40	419	3,77	182	1,6
50	640	5,28	314	2,6
63	1005	6,33	480	2,72

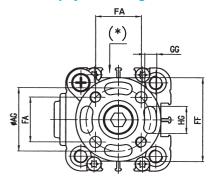
RT220...M

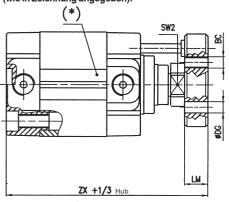
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
32	245	3,02	137,6	1,5
40	380	3,77	188,5	1,7
50	572	5,28	318	2,7
63	910	6,33	487	2,8

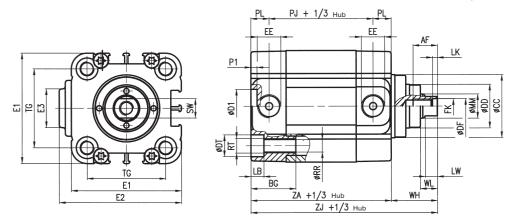
RT220...I

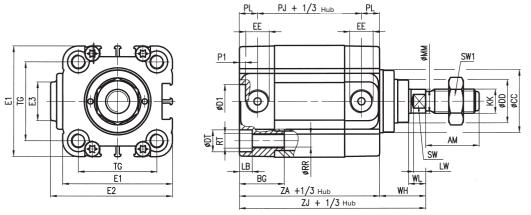

Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	238	2,45	67,2	1,2
32	245	3,02	99,6	1,4
40	380	3,77	142,5	1,6
50	572	5,28	246	2,6
63	910	6,33	385	2,72

RT223...


Zyl.	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
25	270	2,45	79,2	1,2
32	275	3,02	129,6	1,4
40	410	3,77	172,5	1,6
50	617	5,28	291	2,6
63	955	6,33	430	2,72


Dreistufiger Teleskopzylinder mit Flansch RT230...


Dreistufiger Teleskopzylinder Magnetausführung RT230....M


(*)Achtung: die Magnetsensoren der Serie DF... dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

Dreistufiger Teleskopzylinder ohne Flansch RT 230....I

Dreistufiger Teleskopzylinder mit Kolbenstange mit Außengewinde RT233....

Zyl. Ø	AF	Ø AG	АМ	вс	ВG	Ø CC	ØD1 H11	Ø DD	Ø DF	Ø DG	Ø DT	E1	E2	E3	EE	FA	Ø FF	GG	HG	KF
40	10	28	22	M5	18	32	14	22	6,2	5	9	56	60,5	16	G1/8	19,8	37	5,2	11	M6
50	12	28	22	M5	24	40	18	26	8,2	5	11	66	70,5	16	G1/8	19,8	37	5,2	11	M8
63	12	33	22	M5	24	48	18	32	8,2	5	11	79	83,5	38	G1/8	23,3	42	5,2	15	M8

Zyl. Ø	кк	LB	LK	LM	LW	Ø MM	P1	PJ	PL	Ø RR	RT	sw	SW1	SW2	TG	WH	WL	ZA	ZJ	zx
40	M10X1,25	5,3	2	10	5	10	2,5	45	7,5	5,2	M6	8	17	17	38	22	7	60	82	92
50	M10X1,25	6,5	2	10	5	12	2,5	46	7,5	6,6	M8	10	17	17	46,5	24	7	61	85	95
63	M10X1,25	6,5	2	10	5	12	2,5	50	7,5	6,6	M8	10	17	19	56,5	25	7	65	90	100

Maßliche Abweichungen der Serie RT230....M

	Zyl. Ø	Ø AG	вс	Ø DG	FA	Ø FF	GG	HG	LM	SW2	ZX
Ī	40	33	M5	5	23,3	42	5,2	15	10	19	92
	50	42	M6	6	29,7	52	6,2	19	12	24	97
	63	50	M6	6	35,4	64	6,2	25	12	24	102

Masse

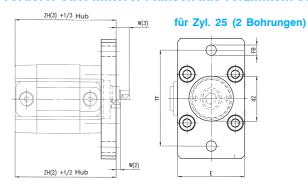
RT230...

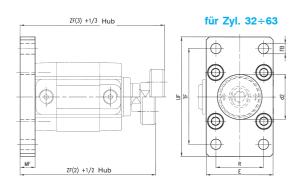
•	Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
•	40	399	3,9	162	1,75
	50	591	5,07	265	2,37
	63	939	6,34	417	2,75

RT230...M

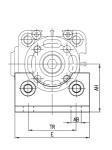
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
40	374	3,9	191	2
50	553	5,07	306,5	2,62
63	871	6.34	459	3

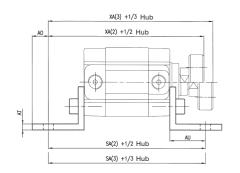
RT230...I


Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
40	374	3,9	137	1,75
50	552	5,07	225,5	2,37
63	871	6,34	349	2,75


RT233...

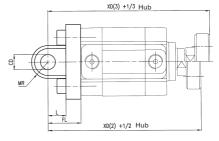
Zyl. Ø	Zyl. Hub "0" (g)	Zunahme pro mm Hub (g)	Bewegl. Teil Hub "0" (g)	Zunahme pro mm Hub (g)
40	405	3,9	168	1,75
50	583	5,07	256,5	2,37
63	902	6,34	380	2,75

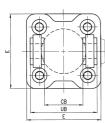

Vorderer oder hinterer Flansch aus verzinktem Stahl



Zyl. Ø	Ød2 H11	E	Ø FB H13	14//01	W(3)	MF	R JS14	TF JS14	UF	ZF(2)	ZF(3)	ZH(2)	ZH(3)	Masse Kg	Artikelnr.
25	24	40	6,6	7	-	10	-	60	76	83	-	58	-	0,18	RTF-12025
32	30	45	7	3	-	10	32	64	80	91	-	68	-	0,20	KF-12032
40	35	52	9	2	12	10	36	72	90	92	102	70	70	0,25	KF-12040
50	44	65	9	3	12	12	45	90	110	100	109	73	73	0,50	RTF-12050
63	52	75	9	3	13	12	50	100	120	104	114	77	77	0,65	RTF-12063

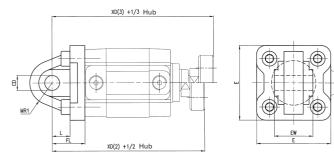
Winkelfußbefestigungen aus verzinktem Stahl



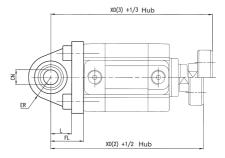


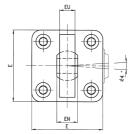
Zy Ø	. ØAB H13	AH JS15	AO max	АТ	AU ±0,2	E max	SA(2)	SA(3)	TR	XA(2)	XA(3)	Masse Kg	Artikelnr.
25	6,6	30	6	4	16	40	80	-	26	89	-	0,04	RTF-13025
3 2	? 7	32	11	4	24	50	106	-	32	105	-	0,07	KF-13032
40	9	36	15	4	28	58	116	116	36	110	120	0,09	KF-13040
50	9	45	15	5	32	70	125	125	45	120	129	0,20	RTF-13050
63	9	50	15	5	32	85	129	129	50	124	134	0,20	RTF-13063

Hinterer Gelenklagerbock aus Aluminiumdruckguß mit Bolzen aus verzinktem Stahl



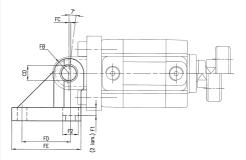
Zyl. Ø	CB H14	ØCD H9	E	FL	L	MR	UB h14	XD(2)	XD(3)	Masse Kg	Artikelnr.
32	26	10	48	22	12	11	45	103	-	0,06	KF-10032A
40	28	12	54	25	15	13	52	107	117	0,08	KF-10040A
50	32	12	65	27	15	13	60	115	124	0,15	KF-10050A
63	40	16	75	32	20	17	70	124	134	0,25	KF-10063A

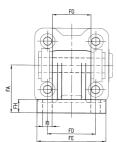

Hinteres Gelenklager aus Aluminiumdruckguß



Für Zylinder Ø 25; es ist möglich, den Gelenklagerbock zusammen mit MF-21025 der Serie Mikrozylinder ISO 6432 zu verwenden.

2	zyl. Ø	ØCD H9	E	EW toll. ±0,2	FL	L	MR1	XD(2)	XD(3)	Masse Kg	Artikelnr.
	25	8	38	16	20	14	8	93	-	0,027	RPF-11025
	32	10	48	26	22	12	15	103	-	0,08	KF-11032
	40	12	54	28	25	15	18	107	117	0,10	KF-11040
	50	12	65	32	27	15	20	115	124	0,17	KF-11050
Ī	63	16	75	40	32	20	23	124	134	0,25	KF-11063


Hinteres Drehgelenklager aus Aluminiumdruckguß



	Zyl. Ø	ØCN H9	Е	EN	ER	EU	FL	L	XD(2)	XD(3)	Masse kg	Artikelnr.
	32	10	48	14	15	10,5	22	14	103	-	0,10	KF-11032S
	40	12	54	16	18	12	25	16,5	107	117	0,20	KF-11040S
ı	50	12	65	16	20	12	27	17,5	115	124	0,30	KF-11050S
	63	16	75	21	23	15	32	21,5	124	134	0,35	KF-11063S

Gegengelenk 90° aus Aluminiumdruckguß

	Zyl. Ø	ØCD H9	FA Js15	FB	FC	FD	FE	FG ±0,2	FH	Ø FI	F1	ø F2	Masse kg	Artikelnr.
ĺ	32	10	32	10	1,2	32,5	46,5	26	9	6,4	5,5	10,5	0,10	KF-19032
	40	12	36	12	2,6	38	51,5	28	9	6,4	5,5	10,5	0,20	KF-19040
ĺ	50	12	45	12	0,3	46,5	63,5	32	9	8,4	5	13,5	0,30	KF-19050
	63	16	50	16	3,3	56,5	73,5	40	10,5	8,4	5	13,5	0,35	KF-19063

Führungseinheite	n für Druckluftzylind	ler geeignet für:		
Zylinder ISO 6431 - 6432 Serie M Ø 16 ÷ 25 Serie K/KD Ø 32 ÷ 100	Kolbenstan- genlose Zylinder Serie S1 Ø 25 ÷ 50	Kurzhub- zylinder Serie W Ø 25 ÷ 100	Kompakt- zylinder STRONG Serie RS Ø 32 ÷ 63	Teleskop- zylinder zweistufig Serie RT2 Ø 32 ÷ 63

KONSTRUKTIONSMERKMALE

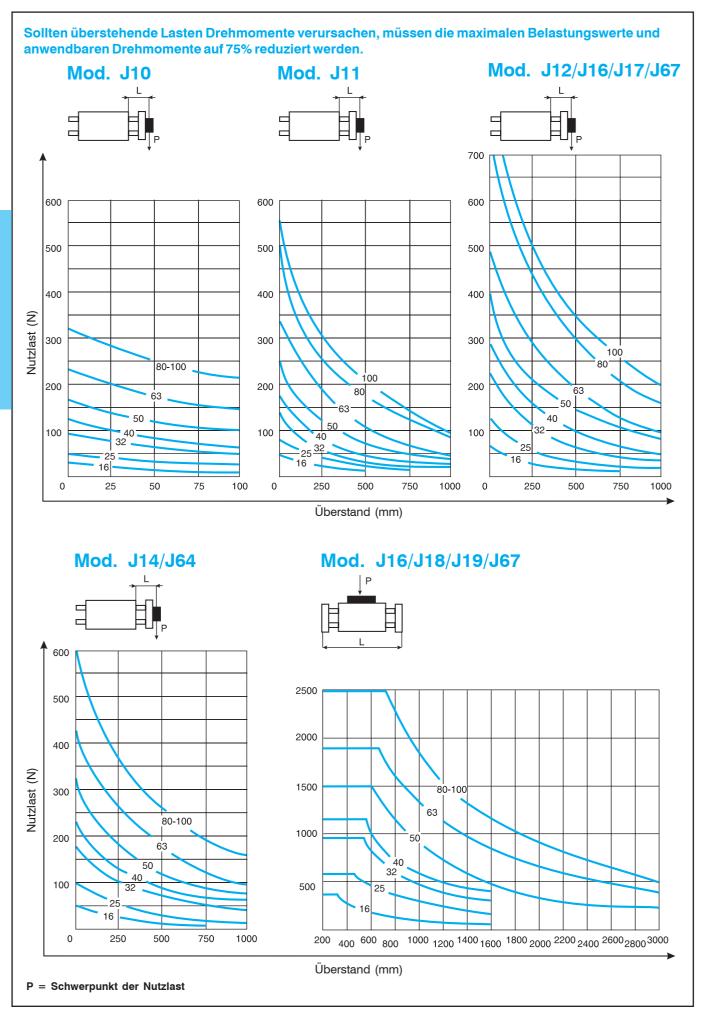
Außenprofil Führungsstangen aus Strangpreßaluminium

Robustheit und Zuverlässigkeit dank groß dimensionierter, hohler, verchromter Führungsstangen

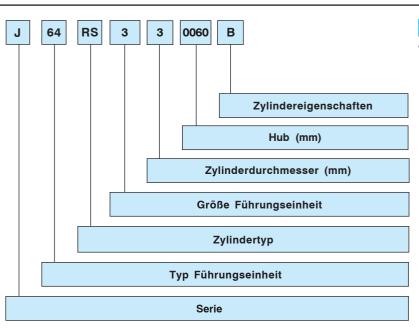
Wirtschaftlicher Betrieb aufgrund verschleißfester Materialien, dadurch hohe Lebensdauer (7000 - 10000 km)

Widerstandsfähigkeit und geräuscharmer Betrieb durch selbstschmierende Führungsbüchsen aus speziellem Stahl

Standardisierte Ausführungen, aber auch kundenbezogene Modelle auf Anfrage


Bewährte hohe Widerstandsfähigkeit bei Spitzenbelastungen

Sicherheitsabstand von 25 mm zur Vorbeugung von Unfällen für alle Modelle nach EN 349



	Т	ECHNISCHE DATE	N											
	Betriebsdruck:													
2 ÷ 10 bar	3 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar	2 ÷ 10 bar										
Umgebungstemperatur:														
	- 20°C ÷ 80°C													
	GRÖßEN													
16 ÷ 100	40 ÷ 80	25 ÷ 100	32 ÷ 63	32 ÷ 63										
	STAN	DARDHUBLÄNGEN	(mm)	I										
25 ÷ 1000 bis 800 mm max 5 ÷ 75 15 ÷ 800 120 ÷ 1200														
Min. und max. Hublängen, siehe entsprechende Typenschlüssel														

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

SERIE

 J = Familie Führungseinheit für Kompaktzylinder STRONG Ø 32 ÷ 63 mm

TYP FÜHRUNGSEINHEIT

- **64** = geschützter Zylinder
- **65** = geschützter Zylinder, durchgehende Öffnung
- **66** = geschützter Zylinder, durchgehende Öffnung zwei Platten
- **67** = geschützter Zylinder, zwei Platten Alle Typen mit Stangenabstreiferbuchsen

ZYLINDERTYP

Zylinder Serie STRONG mit längem Kolben(RS22J auf Anfrage) mit Zylinderrohr um 180° gedreht im Vergleich zu den Speisungen zur Aufnahme der magnetischen Sensoren

GRÖßE FÜHRUNGSEINHEIT

- 3 = 32 nur für Zylinder Ø 32
- 4 = 40 nur für Zylinder Ø 40
- 5 = 50 nur für Zylinder Ø 50
- 6 = 63 nur für Zylinder Ø 63

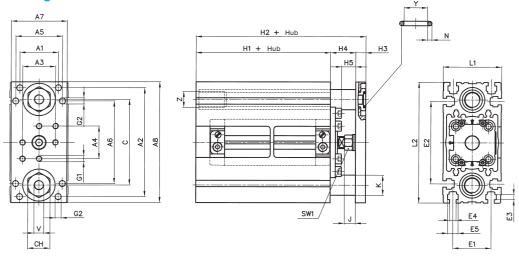
ZYLINDERGRÖßE

- **3** = 32
- 4 = 40
- **5** = 50
- 6 = 63

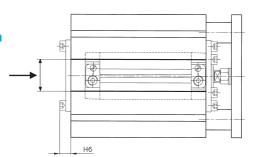
HUBLÄNGEN FÜHRUNGSEINHEIT

Standardhublängen mm:

0015 ÷ 0800 mm

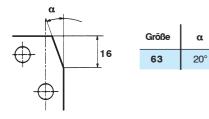

ZYLINDEREIGENSCHAFTEN

- A = Zylinder mit langem Kolben
- **B** = Zylinder mit langem Kolben und Feststelleinheit



J65..., auf Anfrage, für
Hublängen über 50 mm
Führungseinheiten mit
durchgehender
Öffnung* zur
Positionierung der
Magnetsensoren in
Zwischenstellungen.

Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

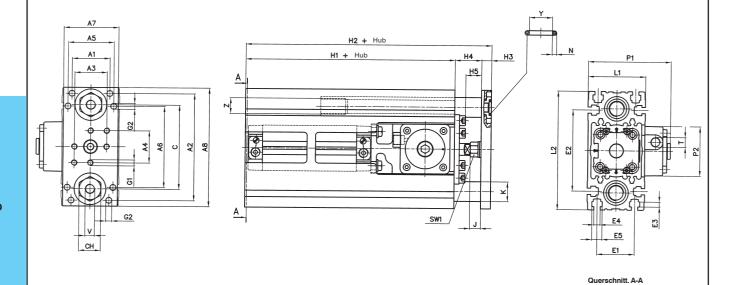

Zyl. Ø	Н6
32	11
40	12
50	14
63	14

Größe Führung einheit		A1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

Führ	öße rungs- nheit	Zyl. Ø	G2(*)	H1 + hub (**)	H2+ hub (**)	НЗ	H4	H5	J	K	L1	L2	N	SW1	٧	Y	z
3	32	32	Ø6 H8	78 + hub (**)	113 + hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78	M16x1,5
4	10	40	Ø8 H8	82 + hub (**)	117 + hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78	M18x1,5
5	0	50	Ø8 H8	91 + hub (**)	128 + hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78	M20x1,5
6	3	63	Ø8 H8	98 + hub (**)	135 + hub (**)	12	25	11	7	28	98	176	2,62	18	1/8"	10,78	M22x1,5

Größe	Zyl. Ø	Masse Hi	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub					
		ש	Führungseinheit Zylinder Feststelleinh		Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder		
	32	32	1024	303	-	6	2,5	2,65		
	40	40	1325	483	-	7	2,8	4		
	50	50	2159	739	-	11	3,7	5,6		
63 (63	3025	1127	-	13,6	4,7	6,55		

Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:

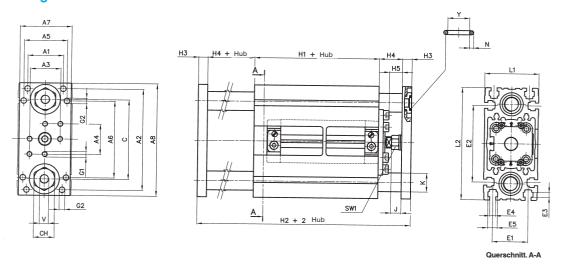

ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

^{*} In Verbindung mit Paß-Stift, Toleranz m6.

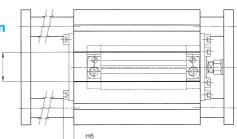
^{**} Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

J 64...B, 2 Führungsbüchsen mit Feststelleinheit

Größe Führungs- einheit	Zyl. Ø	H1 + hub (**)	H2+ hub (**)	H4	H5	P1	P2
32	32	151 + hub (**)	188 + hub (**)	27	16	83,5	50
40	40	158 + hub (**)	194 + hub (**)	26	14	91,5	58
50	50	173 + hub (**)	209 + hub (**)	24	10	106,5	70
63	63	187 + hub (**)	223 + hub (**)	24	10	129	85


- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

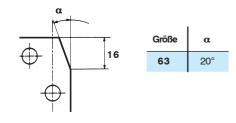
Grö	röße	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub					
		۵	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder			
3	32	32	2241	303	779	6	2,5	2,65			
4	10	40	2876	483	992	7	2,8	4			
Ę	50 50		4590	739	1528,5	11	3,7	5,6			
6	63	63	6606	1127	2370	13,6	4,7	6,55			


Für Befestigungszubehör siehe Abschnitt High-Tech Seite 58-II.

J67..., 2 Führungsbüchsen

J66... auf Anfrage für Hublängen über 50 mm Führungseinheiten mit durchgehender Öffnung* zur Positionierung der Magnetsensoren in Zwischenstellungen.

Diese Version beinhaltet die Zunahme von "H2" um den in der Tabelle aufgeführten Wert "H6".

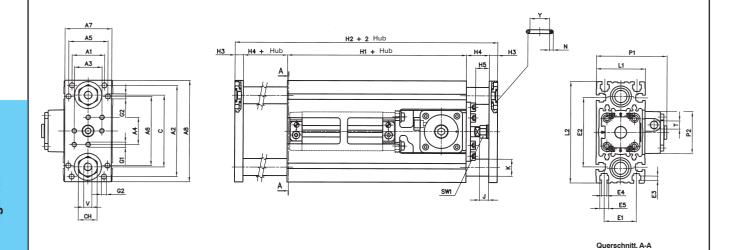

Zyl. Ø	Н6
32	11
40	12
50	14
63	14

Größe Führungs- einheit	Zyl. Ø	A 1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
63	63	56	157.5	56.5	56.5	79.5	120	95	175	130	30	56	120	7.5	10.5	17.5	M8

Fü	iröße hrungs- inheit	Zyl. Ø	G2(*)	H1 + hub (**)	H2+ 2 hub (**)	НЗ	H4	H5	J	К	L1	L2	N	SW1	v	Υ
	32	32	Ø6 H8	78 + hub (**)	148 + 2 hub (**)	10	25	14	11	20	58	120	2,62	13	1/8"	10,78
	40	40	Ø8 H8	82 + hub (**)	152 + 2 hub (**)	10	25	13	11	22	66	130	2,62	16	1/8"	10,78
	50	50	Ø8 H8	91 + hub (**)	165 + 2 hub (**)	12	25	11	7	25	84	155	2,62	18	1/8"	10,78
	63	63	Ø8 H8	98 + hub (**)	172 + 2 hub (**)	12	25	11	7	28	98	176	2,62	18	1/8"	10,78

Gr	iröße	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub					
_		Q	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder			
	32	32	1092	330	-	6	2,5	2,65			
	40	40	1428	483	-	7	2,8	4			
	50	50	2264	739	-	11	3,7	5,6			
	63	63	3159	1127	-	13,6	4,7	6,55			

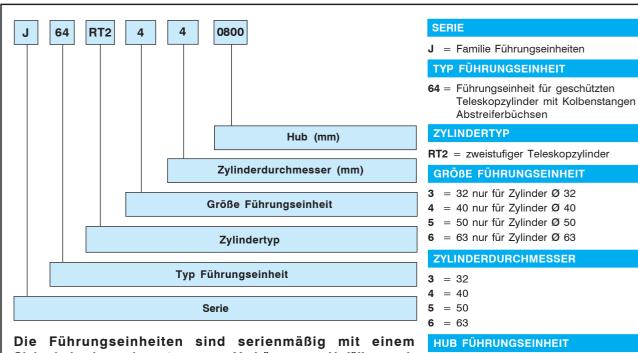
Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:



- * In Verbindung mit Paß-Stift, Toleranz m6.
- ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

ACHTUNG: für alle Größen bis Hub 50 mm ist die Öffnung des stranggepreßten Körpers durchgehend in Übereinstimmung mit den Speisungsanschlüssen.

J67....B, 2 Führungsbüchsen mit Feststelleinheit


Führ	öße ungs- heit	Zyl. Ø	H1 + hub (**)	H2+ hub (**)	H4	Н5	P1	P2
3	2	32	151 + hub (**)	225 + hub (**)	27	16	83,5	50
4	0	40	158+ hub (**)	230 + hub (**)	26	14	91,5	58
5	0	50	173 + hub (**)	245 + hub (**)	24	10	106,5	70
6	3	63	187 + hub (**)	259 + hub (**)	24	10	129	85

- * In Verbindung mit Paß-Stift, Toleranz m6.
 ** Mindesthub MAGNETZYLINDER für Größen 32 und 40 = 20 mm / für Größen 50 und 63 = 15 mm.

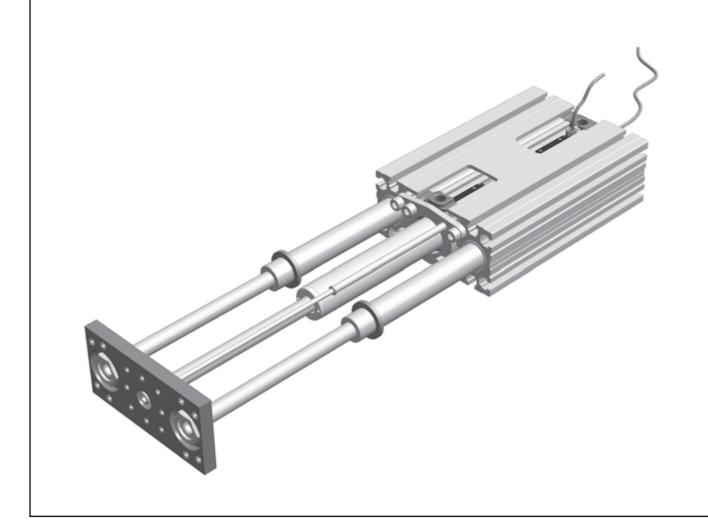
Größe	Größe	Zyl. Ø	Masse Hu	ıb "0" in	gr.	Massezunahme (gr.) pro mm Hub					
		Ø	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder			
	32	32	2492	303	779	6	2,5	2,65			
	40	40	3165	483	992	7	2,8	4			
Ī	50	50	4998	739	1528,5	11	3,7	5,6			
63		63	7153	1127	2370	13,6	4,7	6,55			

Für Befestigungszubehör siehe Abschnitt High-Tech Seite 58-II.

Die Führungseinheiten sind serienmäßig mit einem Sicherheitsabstand von 25 mm zur Verhütung von Unfällen nach EN 349 gebaut

Standardhublängen in mm:

0120-0160-0180-0200-0300-0400-0500-0600-0700-0800-0900-1000-1100-1200


Hublängen min.-max.:

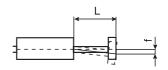
Ø 32 0160 ÷ 0400 mm

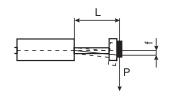
Ø 40 0160 ÷ 0600 mm

Ø 50 0120 ÷ 0900 mm

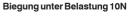
Ø 63 0120 ÷ 1200 mm

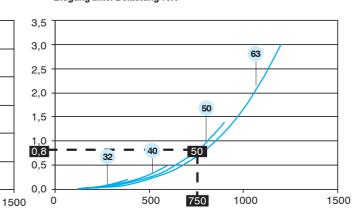
0,6


0,4


0,2

0,0


Biegungsdiagramm gemäß Länge der Führungseinheit



Biegung unter Eigengewicht 1,2 1,0 Biegung mit Belastung 10 N [mm] 0,8

500

Überstand [mm]

Anwendungsbeispiele:

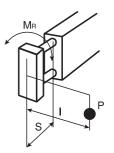
Beispiel zur Errechnung der Biegung

Die Gesamtbiegung der Führungseinheit wird bestimmt indem die Biegung unter dem Eigengewicht mit der Biegung durch die Belastung summiert wird.

1000

Für Belastungen, die von 10 N oder 100 N (Werte der Kurve) abweichen, erhält man die Biegung indem man den Kurvenwert K mit nachstehendem Verhältnis multipliziert:

$$f = K \cdot \frac{Q \text{ (Belastung)}}{10 \text{ N}}$$


Beispiel: Führungseinheit Größe 50 Länge L 750 m und Belastung Q 25N.

Auf der entsprechenden Kurve der Biegung unter Belastung 10N erhalte ich einen Koeffizient von 0,8 (auf der Kurve in Negativ angegeben) Daher:

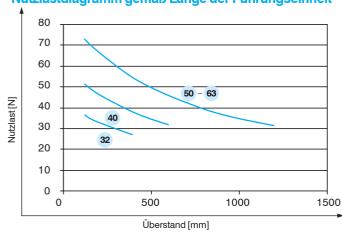
$$f = 0.8 \cdot \frac{25}{10} = 2 \text{ mm}$$

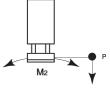
zu dem so ermittelten Wert den entsprechenden Biegungswert der Führungseinheit unter dem Eigengewicht addieren.

Werte des maximalen Widerstandsmoments MR

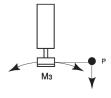
Größe	MR
32	4,7
40	7,8
50	10,2
63	10,2

Errechnung des Drehmoments

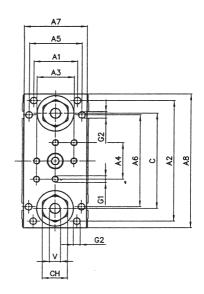

Für die Errechnung des Drehmoments M1 muß die Belastung P (N) mit dem Arm I (mm) multipliziert werden.

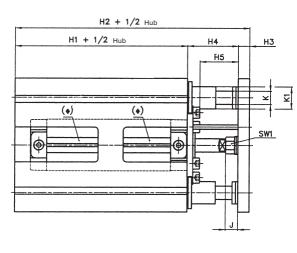

$$M1 = P \cdot I$$

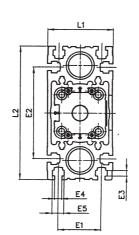
Der so erhaltene Wert muß niedriger sein als die maximalen MR Werte, die in der Tabelle angegeben sind: sollte der erhaltene Wert über diesem Wert liegen, muß auf die nächstgrößere Führungseinheit übergegangen werden.


Maximale Werte des Widerstandsmoments (Nm)

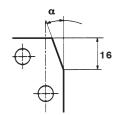
Nutzlastdiagramm gemäß Länge der Führungseinheit




	Größe	M2=M3 Nm
	32	7,4
	40	12
■ P	50	17,8
M2	63	17,8
•		



Teleskopische Führungseinheit Magnetausführung J64RT2...


(*) Achtung: die Magnetsensoren der Serie DF__ dürfen nur in der Nähe des teleskopischen Magnethalterstängchens angebracht werden (wie in Zeichnung angegeben).

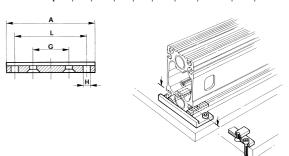
	Größe Führungs- einheit	Zyl. Ø	A1	A2	А3	A 4	A 5	A6	A7	A8	С	СН	E1	E2	E3	E4	E5	G1
	32	32	38	108	32,5	32,5	46	82	55	120	85	22	38	82	5	6,4	10,4	M6
	40	40	42	118	38	38	54	90	65	130	95	22	42	90	5	6,4	10,4	M6
	50	50	48,1	140	46,5	46,5	69	110	80	155	115	27	48	110	6,5	8,4	13,4	M8
_	63	63	56	157,5	56,5	56,5	79,5	120	95	175	130	30	56	120	7,5	10,5	17,5	M8

Grö Führu einh	ıngs-	Zyl. Ø	G2(*)	H1+1/2 hub (**)	H2+1/2 hub (**)	НЗ	H4	Н5	J	к	K1	L1	L2	N	SW1	v	Y
32	2	32	Ø6 H8	72 + 1/2 hub (**)	107+ 1/2 hub (**)	10	25	16	12	12	20	58	120	2,62	13	G 1/8	10,78
4 ()	40	Ø8 H8	78 + 1/2 hub (**)	113 + 1/2 hub (**)	10	25	15	13	14	22	66	130	2,62	16	G 1/8	10,78
5 ()	50	Ø8 H8	92 + 1/2 hub (**)	129 + 1/2 hub (**)	12	25	14	10	16	25	84	155	2,62	18	G 1/8	10,78
63	3	63	Ø8 H8	95 + 1/2 hub (**)	132 + 1/2 hub (**)	12	25	14	10	16	28	98	176	2,62	18	G 1/8	10,78

	Größe	Zyl. Ø	Masse Hu	ub "0" in	gr.	Massezunahme (gr.) pro mm Hub			
	Ø	Führungseinheit	Zylinder	Feststelleinheit	Führungseinheit	Führungss- tange	Zylinder		
	32	32	1092	330	-	6	2,5	2,65	
	40	40	1428	483	-	7	2,8	4	
	50	50	4590	739	-	11	3,7	5,6	
	63	63	3159	1127	-	13,6	4,7	6,55	

Achtung: die Platten für die Größen 63 sind auf den 4 Seiten abgeschrägt gemäß nachstehender Tabelle:

Größe	α	
63	20°	
·		


^{*} in Verbindung mit Paß-Stift, Toleranz 6 m

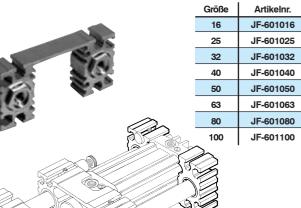
^{**} Mindesthublänge für TELESKOPISCHE FÜHRUNGSEINHEIT MAGNETAUSFÜHRUNG für Größen 32 und 40 = 160 mm (80 + 80) für Größen 50 und 63 = 120 mm (60 + 60).

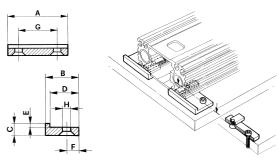
Fußbefestigungen aus Aluminium

Größe	•	Α	В	С	D	Е	F	G	Н	L	Artikelnr.
16		52	30	10	26	4	9	20	Ø 4,5	43	JF-13016
25		70	30	10	26	4	9	32	Ø 5,5	57	JF-13025
32		85	35	10	30	5	10	38	Ø 6,5	72	JF-13032
40		92	35	10	30	5	10	42	Ø 6,5	79	JF-13040
50		11	40	15	35	5	12,5	48	Ø 8,5	102	JF-13050
63		13	45	15	40	5	15	56	Ø 10,5	112	JF-13063
80		16	45	15	40	5	15	65	Ø 10,5	135	JF-13080
100	П	17	45	15	40	5	15	72	Ø 10,5	151	JF-13100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Befestigungsplättchen aus Stahl


Größe	Α	В	С	D	Ε	F	Artikelnr
16	3	7	7,5	15	30	M4	JF-42016
25	4	8	10	15	35	M5	JF-42025
32 - 40	4	10	10	20	40	M6	JF-42040
50	6	13	10	30	50	M8	JF-42050
63	6	16	12,5	35	60	M10	JF-42063
80 - 100	8	16	15	40	70	M10	JF-42100

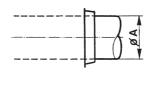


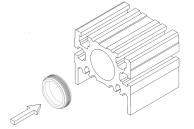
Die Standardpackung enthält 2 Stück mit Befestigungszubehör

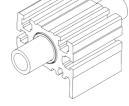
Führungsstangenträger für Führungseinheiten der Serien J10/J11/J12

Größe	Α	В	С	D	Ε	F	G	н	Artikelnr.
16	50	30	10	26	3	9	31	Ø 4,5	JF-14016
25	55	30	10	26	3	9	34	Ø 5,5	JF-14025
32	60	35	10	30	4	10	38	Ø 6,5	JF-14032
40	65	35	10	30	4	10	40	Ø 6,5	JF-14040
50	70	40	15	35	4	12,5	45	Ø 8,5	JF-14050
63	85	45	15	40	4	15	56	Ø 10,5	JF-14063
80 - 100	90	45	15	40	4	15	58	Ø 10,5	JF-14100

Die Standardpackung enthält 4 Stück mit Befestigungszubehör


Größe	Α	В	С	D	Artikelnr.
16	3	7	16	M4	JF-43016
25	4	8	16	M5	JF-43025
32 - 40	4	10	18	M6	JF-43040
50	6	13	18	M8	JF-43050
63	6	16	22	M10	JF-43063
80 - 100	8	16	25	M10	JF-43100




Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Büchsen für Führungsstangenabstreifer

Größe	ØΑ	Artikelnr.
16	12	JF-19016
25	16	JF-19025
32	20	JF-19032
40	22	JF-19040
50	25	JF-19050
63	28	JF-19063
80 - 100	32	JF-19100

Die Standardpackung enthält 2 Stück mit Befestigungszubehör

Konstante Qualität, originale Projekte, eine breite Produktpalette, sowie ein richtiges Qualitäts-Preis-Verhältnis ermöglichen UNIVER, allen Ansprüchen der Benutzer gerecht zu werden. Die zur Verfügung stehenden Grundplatten (SPEED) erlauben eine schnelle Serienanordnung dieser Elektroventile, was wiederum die Vielschichtigkeit ihrer Anwendungsmöglichkeiten erhöht.

TECHNISCHE DATEN

Kernsystem mit direktem Eingriff und abgefederter Dichtung Montage auf Grundplatte oder mit Gewinden am Ventilgehäuse Ventilgehäuse aus Zamakund Messing;

Kern aus rostfreiem Stahl (mit nicht relevantem Restmagnetismus)

Führungsrohr aus behandeltem Messing. Auf Anfrage aus rostfreiem Stahl.

Federn aus rostfreiem Stahl

Diehtungen aus Nitrilgummi

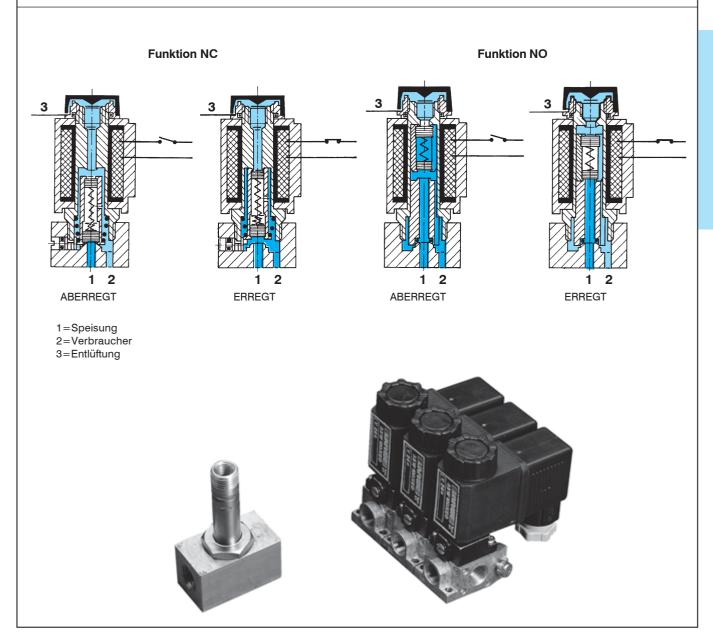
NC Funktion (stromlos geschlossen)

NOFunktion (stromlos often) so konzipiert, daß der Drucklufteingang immer am Gehäuse ist (nützlich bei Serienmontage von mehreren Pilotventilen NC oder NO, umeine einzigeSpeisung zu erhalten)

NC/NO unktion (NO Eingang von oben)

Betriebsmedium; gefilterte Druckluft 50 μ m mit oder ohne Schmierung, neutrale Gase. Auf Anfrage andere Medien.

Umgebungstemperatur: - 5° C + 50° C


Temperatur Betriebsmedium: + 95° C max.

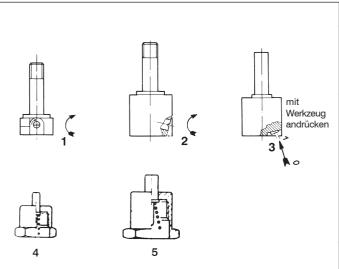
Spule U1 erie DA (U3 Serie DC9, U2 Serie DB Abschnitt Zubehör Seite 13-V.

ANMERKUNG: Es besteht die Möglichkeit, eine annähernde Schätzung

des Faktors "CV" durchzuführen, indem die in NI/min ausgedrückten Durchflußwerte durch "962" dividiert werden

FUNKTIONSPRINZIP

Тур	Maximale Abmessungen	Wege	Funktion	Ø m m	Druck (bar)	Werkstoff	Masse kg	Artikel- nummer
KERNFÜHRUNGSRO	OHRE U1 komplett mit beweglichen	n Kei	rn					
	M5 25 (NO) 0 13,4	3/2	NO	1,2	3÷10	Kernführ- ungsrohr: behandeltes Messing	0,030	AA-0150
	0 10 37 34.5 Ch14 r=0.1 1.5 + + 5.1 6.5 254 4	3/2	NC	1,5	0÷10	Kerne und Federn: rostfreier Stahl	0,030	AA-0157
	0 10x1 M13x05 0 08+18 5 0 2,5	2/2	NC	-	0÷10	Dichtungen Nitrilgummi	0,030	AA-0170
KERNFÜHRUNGSRO	OHRE U2 - komplett mit bewegliche	m K	ern					
	G1/8"	3/2	NO	2	3÷10	Kernführ- ungsrohr: behandeltes	0,060	AB-0600
survey Par	0 20.5 M20x1 	3/2	NC	2,4	0÷10	Messing Kerne und	0,060	AB-0613
	Ch22 105 4 25 08 1 7 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/2	NC �	-	0÷10	Federn: rostfreier Stahl	0,060	AB-0640
	0 08+3	2/2	NC	-	0÷10	Dichtungen Nitrilgummi	0,070	AB-0643


- Auf Anfrage können Dichtungen aus Viton und Führungsrohre aus rostfreiem Stahl (nur NC-Version) geliefert werden
 * Die Ausführung NC/NO ist für die Steuerung von zwei Eingangsdrücken ausgelegt
 \$\diamog{e}\$ geeignet für Grundplatten mit Druchfluss nennweite von 3 \diamog{+} 6 mm

Spulenbefestigungsmuttern für Kernführungsrohre

Тур	Maximale Abmessungen	Ausführung	Für Kernführ- ungsrohre	Ventil	Artikel- nummer
0	98	Radiale Entlüftung Radiale Entlüftung		U1 U1	AM-5211A AM-5213A
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. Offene Entlüftung	NC 2/2	U1	AM-5211B
3 9	55 55	4. Radiale Entlüftung	NC 3/2 NO 3/2	U2 U2	AM-5212A AM-5214A
	φ 15.8 φ 22 4 5	5. Offene Entlüftung	NC 2/2	U2	AM-5212B

Für das Zusammenleiten der Entlüftungen die offene Ausführung verwenden.

Beispiele für lieferbare Handbetätigungen, in der Artikelnummer der Pilotventile enthalten

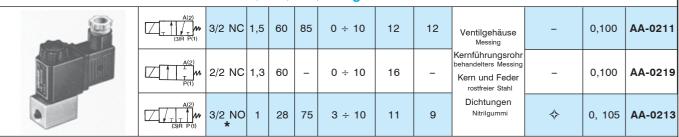
	Funktionsweise	Für Kernführungsrohre	Symbol
1. =	mit Schraube 2 Positionen	alle Pilotventile NC U1-U2, wenn Handbetätigung vorgesehen	-
2. =	mit Schraube (Impuls) 1-2 Positionen	nur Pilotventile	-
3. =	mit Druckknopf mit Werkzeug	Cnomo NC U1-U2	→
	Funktionsweise	Für Kernführungsrohre	Artikelnr.
4. =	mit Druckknopf 1 Position	Pilotventile U1 3/2 NO	AM-5201
5. =	mit Druckknopf 1 Position	Pilotventile U2 3/2 NO	AM-5203

Тур	Symbol	Wege	Ø mm	Durc NI/r		Druck (bar)	Schalt err.(ms)	tzeiten	Werkstoff	Handbe- tätigung	Masse kg	Artikel- nummer
Pilotventil U1 für Mor	otventil U1 für Montage auf Grundplatte - 2/2-3/2							99	9			
	A(2) T (3)R P(1)	3/2 NC	1,5	60	80	0 ÷ 10	12	12	Ventilgehäuse Technopolymer	-	0,036	AA-0184
	A(2) T P(1)	2/2 NC	1,3	50	-	0 ÷ 10	16	-	Kernführungsrohr behandelters Messing Kern und Feder rostfreier Stahl	<u></u>	0,036	AA-0186
	(3)R P(1)	3/2 NO *	1,2	30	70	3 ÷ 10	11	10	Dichtungen Nitrilgummi	♦	0, 036	AA-0188
Stark reduzierte Einbaumaße erlauben platzsparende Montage von mehreren Pilotventilen in einer Reihe. Passend für Grundplatte SPEED U1. Serienmäßig lieferbar mit Handbetätigung mit Schraubenzieher 2 Positionen. Auf Anfrage sind erhältlich: Ventilgehäuse aus Zamak (ohne Handbetätigung) - Kernführungsrohr aus rostfreiem Stahl - andere Nennweiten.												

Pilotventil U1 - CNOMO für Montage auf Grundplatte SPEED U2 - 2/2 - 3/2 NC-NO

A(2) T (3)R P(1)	3/2 NC	1,5	45	77	0 ÷ 10	12	12	Ventilgehäuse Technopolymer	→	0,112	AA-0400 AA-0400U
A(2) T P(1)	2/2 NC	1,3	42	-	0 ÷ 10	18	-	Kernführungsrohr behandelters Messing Kern und Feder rostfreier Stahl	-	0,112	AA-0402
(3)R P(1)	3/2 NO *	1,2	33	77	3 ÷ 10	12	11	Dichtungen Nitrilgummi		0, 117	AA-0404

Zur Verwendung bei Batteriemontage. Dieses Pilotventil entspricht der internationalen Norm CNOMO, (sehr nützlich bei Austausch nach Service); reduzierte Einbaumaße (Höhe) für Montage auf Grundplatte SPEED U2. Auf Anfrage sind erhältlich: Kernführungsrohre aus Zamak - andere Nennweiten.



Pilotventil U1 Gewindeanschlüsse M5 - 2/2 - 3/2 Wege

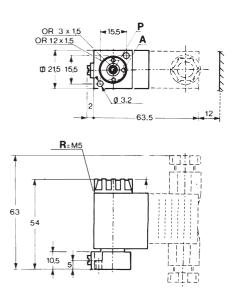
	A(2) T (3)R P(1)	3/2 NC	1,5	60	80	0 ÷ 10	12	12	Ventilgehäuse Messing	-	0,060	AA-0231
	A(2) T P(1)	2/2 NC	1,3	50	ı	0 ÷ 10	16		Kernführungsrohr behandelters Messing Kern und Feder rostfreier Stahl		0,060	AA-0239
10	(3)R P(1)	3/2 NO	1	30	70	3 ÷ 10	11	10	Dichtungen Nitrilgummi		0, 065	AA-0233

Zu verwenden als Einzelventil mit stark reduzierten Einbaumaßen. Das Gehäuse aus Messing ist geeignet für neutrale Flüssigkeiten. Ohne Handbetätitung. Auf Anfrage sind erhältlich: Kernführungsrohre aus rostfreiem Stahl - andere Nennweiten.

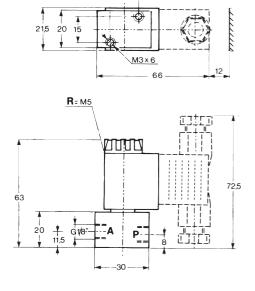
Pilotventil U1 - Gewindeanschlüsse G 1/8 - 2/2 - 3/2 Wege

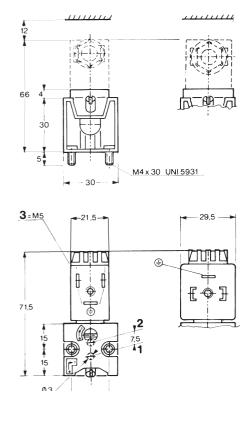
Wie vorstehendes Pilotventil, Jedoch größere Einbaumaße und Anschlüsse G 1/8. Auf Anfrage sind erhältlich: Gehäuse und Kerführungsrohr aus rostfreiem Stahl-andere Nennweiten.

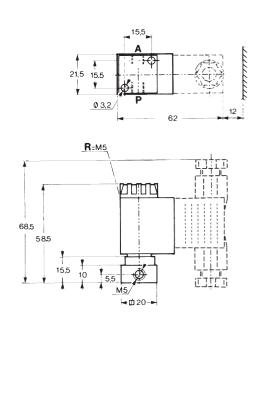
* Das Pilotventil 2/2-Wege NO erhält man indem man einen Stopfen auf die Entlüftung des 3/2-Wege Ventils montiert. Auf Anfrage können Pilotventile in Version NO mit Betriebsdruck 0,7 - 10 bar geliefert werden.


Der auf dem 3/2-Wege Ventil angegebene Durchmesser bezieht sich auf die Entlüftung

Die Artikelnummern verstehen sich ohne Spulen


→ = Handbetätigung an der Mutter (Seite 14) AM-5201


Pilotventil U1 für Montage auf Grundplatte


Pilotventil U1, Gewindeanschlüsse G 1/8

Pilotventil U1 CNOMO für Montage auf Grundplatte SPEED U2

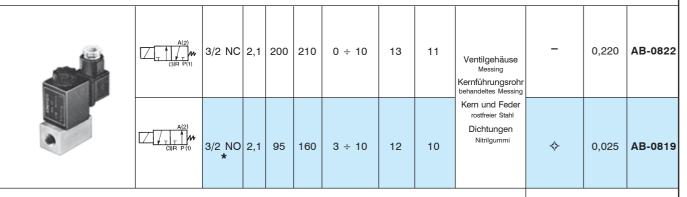
Pilotventil U1, Gewindeanschlüsse M5

Anmerkung: durch den Zusammenbau von 2 Pilotventilen 3/2 (1 NC + 1 NO) ergibt sich eine 5/2-Wege Funktion für die Steuerung von Zylindern mit kleinem Durchmesser (6 + 32 mm) mit Druckwerten bis 10 bar.

Тур	Symbol	Wege	Ø	Durc		Druck	Schal	tzeiten	Werkstoff	Handbe-	Masse	Artikel-
176	Cymbol	Wege	mm		nin. A→R/2→3	(bar)	err.(ms)	aberr.(ms)	Werketon	tätigung	kg	nummer
Pilotventil U2 für Mo	ontage auf (Grund	olati	te - 2	/2-3/	2						
and a second	A(2) T	3/2 NC	2,4	150	160	0 ÷ 10	13	10	Ventilgehäuse Zamak	- ⊝	0,120	AB-0681 AB-0687
	A(2) T P(1)	2/2 NC	2,1	130	1	0 ÷ 10	13	ı	Kernführungsrohr behandeltes Messing Kern und Feder rostfreier Stahl Dichtungen	I (i)	0,120	AB-0722 AB-0728
00	A(2) (3)R P(1)	3/2 NO *	2	92	148	3 ÷ 10	14	10	Nitrilgummi		0,125	AB-0685
Stark reduzierte Einbaumaße erlauben platzsparende Montage von mehreren Pilotventilen in einer Reihe. Passend für Grundplatte SPEED U2. Auf Anfrage sind erhältlich: Kernführungsrohr aus rostfreiem Stahl - andere Nennweiten.												

CNOMO Pilotventil U2 - für Montage auf Anschlußplatte SPEED U2 2/2 - 3/2 Wege

A(2) T (3)R P(1)	3/2 NC	2,4	110	170	0 ÷ 10	13	12	Ventilgehäuse Technopolymer	(-)	0,132	AB-0885
A(2) T P(1)	2/2 NC	2,1	115	-	0 ÷ 10	12	-	Kernführungsrohr behandeltes Messing Kern und Feder rostfreier Stahl Dichtungen	<u> </u>	0,132	AB-0886
(3)R P(1)	3/2 NO *	2,1	92	148	3 ÷ 10	13	10	Nitrilgummi		0,137	AB-0888


Zur Verwendung bei Batteriemontage. Dieses Pilotventil entspricht der CNOMO Norm, (sehr nützlich bei Austausch nach Service); reduzierte Einbaumaße (Höhe) für Montage auf Grundplatte SPEED U2.

Auf Anfrage sind erhältlich: Kernführungsrohre aus rostfreiem Stahl - andere Nennweiten. Ventilgehäuse aus Zamak

= mit Schraube 2 Pos.

→ = Handbetätigung an der Mutter (Seite 16) AM-5203

Pilotventil U2 Gewindeanschlüsse G 1/4 - 3/2 NC

Empfohlen für die Fälle, in denen absolut Gewindeanschlüsse G 1/4 verlangt und neutrale Flüssigkeiten im Einsatz sind. Auf Anfrage sind erhältlich: Gehäuse und Kernführungsrohre aus rostfreiem Stahl.

⇒ = Handbetätigung an der Mutter (Seite 16) AM-5203

* Das Pilotventil 2/2-Wege NO erhält man indem man einen Stopfen auf die Entlüftung des 3/2-Wege Ventils montiert.

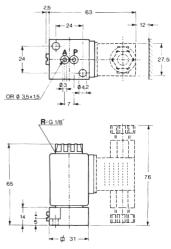
Auf Anfrage können Pilotventile in Version NO mit Betriebsdruck 0,7 - 10 bar geliefert werden.

Es sind außerdem lieferbar Pilotventile 3/2 - 2/2 Wege NC mit direkter Steuerung für Vakuum mit Gewindeanschlüssen G 1/4 und G 1/2 der Serie AG-3--- geeignet für den Betrieb mit Vakuum von 0 ÷ 759 mm Hg. Für nähere Informationen wenden Sie sich bitte an unser Verkaufsbüro.

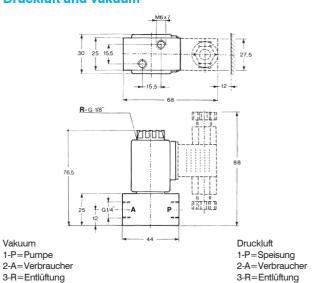
Die Artikelnummern verstehen sich ohne Spulen

Тур	Symbol	Woao I	nm NI/	hfluß min. A→R/2→3 Dru		Itzeiten aberr.(ms)	Werksto	ff Handbe tätigung	1	Artikel- nummer
Pilotventil U2 - Gewi	ndeanschlü	sse G 1	/8 - 2/2	2 - 3/2 We	ge					
	A(2) T T T M	3/2 NC 2	2,4 155	210 0 ÷	10 13	10	Ventilgehäu Messing	- -	0,140	AB-0751 AB-0757
	A(2) T T P(1)	2/2 NC 2	2,1 155	- 0 ÷	10 12	_	Kernführu gsrohr behandelte Messing Kern und Fe		0,140	AB-0765 AB-0771
	(3)R P(1)	3/2 NO 2	2,1 100	150 3 ÷	10 14	11	rostfreier Sta Dichtunge Nitrilgumm	n	0, 145	AB-0755
Für Verwendung als Einzelventii Auf Anfrage sind erhältlich: Kern	erwendung als Einzelventil. nfrage sind erhältlich: Kernführungsrohr aus rostfreiem Stahl - andere Nennweiten.									der Mutter
Тур	Symbol	Wege	Ø mm	Durchfluß NI/min.	Druck (bar)	Schalt err.(ms)	aberr.(ms)	Werkstoff	Masse kg	Artikel- nummer
Pilotventil U2 - Gewi	ndeanschlü	sse G 1	/4 - 2/2	2 Wege						
8		2/2 NC	1,6	108	0 ÷ 30	6	-		0,220	AB-0824
E		2/2 NC	2	165	0 ÷ 20	9	-	Ventilgehäuse	0,220	AB-0825
		2/2 NC	2,4	210	0 ÷ 15	11	-	Messing	0,220	AB-0826
		2/2 NC	3	280	0 ÷ 10	12	-	Kernführun gsrohr	0,220	AB-0827
• Spule U2 - 17 VA	A(2)	2/2 NC	3,5	350	0 ÷ 9	10	-	behandeltes Messing	0,220	AB-0828
	P(1)	2/2 NC	4	450	0 ÷ 8	13	-	Kern und Feder	0,220	AB-0829
		2/2 NC	4,5	500	0 ÷ 7	13	-		0,220	AB-0830
		2/2 NC	5	550	0 ÷ 6,5	16	-	Dichtungen Nitrilgummi	0,220	AB-0831
Spannung Artikelnr. 24/50-60Hz DB-0607 110/50-60Hz DB-0608		2/2 NC	5,5	600	0 ÷ 6	21	-		0,220	AB-0832
220/50-60Hz DB-0610 24 cc DB-0502		2/2 NC	6	650	0 ÷ 5	29	-		0,220	AB-0833

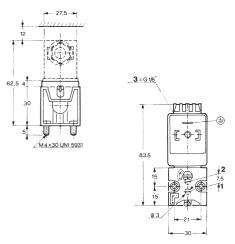
Besonders geeignet für neutrale Flüssigkeiten.
• Verwendung mit druckluftbetätigtem Pilotventile und Direktvakuum 2/2 - 3/2 G 1/4 und G 1/2.


* Das Pilotventil 2/2-Wege NO erhält man indem man einen Stopfen auf die Entlüftung des 3/2-Wege Ventils montiert.

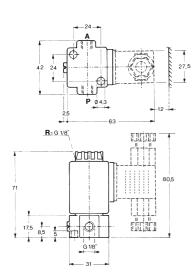
Auf Anfrage können Pilotventilein Version NO mit Betriebsdruck 0,7 - 10 bar geliefert werden.


Es sind außerdem lieferbar Pilotventile 3/2 - 2/2 Wege NC mit direkter Steuerung für Vakuum mit Gewindeanschlüssen G 1/4 und G 1/2 der Serie AG-3--- geeignet für den Betrieb mit Vakuum von 0 ÷ 759 mm Hg. Für nähere Informationen wenden Sie sich bitte an unser Verkaufsbüro.

Pilotventil U2 für Montage auf Grundplatte


Pilotventil U2, Gewindeanschlüsse G 1/4 für **Druckluft und Vakuum**

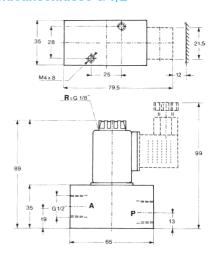
1-P=Speisung


- 2-A=Verbraucher
- 3-R=Entlüftung

Pilotventil U2 Cnomo für Montage auf **Grundplatte Speed U2**

1-P=Speisung 2-A=Verbraucher 3-R=Entlüftung

Pilotventil U2, Gewindeanschlüsse G 1/8

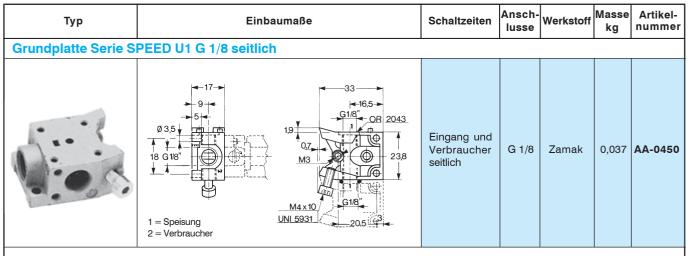


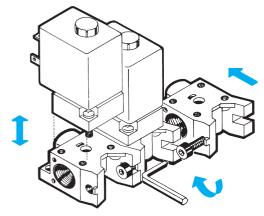
1-P=Speisung

Vakuum

2-A=Verbraucher 3-R=Entlüftung

Pilotventil U2, für Vakuum Gewindeanschlüsse G 1/2



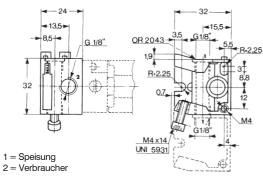

1-P=Pumpe 2-A=Verbrauche

3-R=Entlüftung

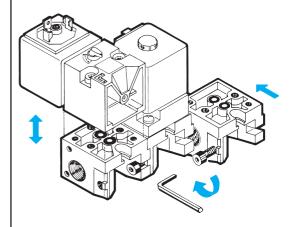
Anmerkung: durch den Zusammenbau von 2 Pilotventillen 3/2 (1 NC + 1 NO) ergibt sich eine 5/2-Wege Funktion für die Steuerung von Zylindern mit kleinem Durchmesser (6 + 32 mm) mit Druckwerten bis 10 bar.

Vorteile

Die Serie SPEED wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.


- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden
- Die Anzahl der Ventile kann beliebig erweitert oder vermindert werden
- Schneller Zusammenbau mittels serienmäßig integrierter Schraube
- Reduzierte Lagerhaltung
- Einfache technische Handhabung

Nur für Univer U1 Pilotventile


Der Eingang für die Druckluft wurde gegenüber dem seitlichen Verbraucher 90° gedreht angebracht. Serienmäßig Schrauben (integriert) und O-Ring. Bei Bestellung angeben: mit oder ohne montiertem Pilotventil

Тур	Einbaumaße	Schaltzeiten	Ansch- lusse	Werkstoff	Masse kg	Artikel- nummer
Grundplatte Serie S	PEED U2 G 1/8 seitlich					
	- 24 → 32 → 13,5 → 31,					

	Eingang und Verbraucher seitlich	G 1/8	Zamak	0,075	AB-0900
--	--	-------	-------	-------	---------

Vorteile

Die Serie SPEED wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert

- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden
- Die Anzahl der Ventile kann beliebig erweitert oder vermindert werden
- Schneller Zusammenbau mittels serienmäßig integrierter Schraube
- Reduzierte Lagerhaltung
- Einfache technische Handhabung

Nur für Univer U1, U2 und CNOMO Pilotventile

Der Eingang für die Druckluft wurde gegenüber dem seitlichen Benutzer um 90° gedreht angebracht. Serienmäßig Schrauben (integriert) und O-Ring. Bei Bestellung angeben: mit oder ohne montiertem Pilotventil

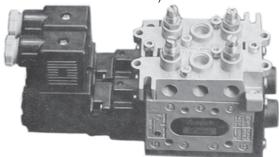
Für den Zusammenbau die Grundplatten flach auflegen und die Schraube gleichmäßig anziehen bis die Batterie perfekt ausgerichtet ist

Das seit Jahren in Produktion befindliche und daher bestens erprobte Mischsystem wird für jene pneumatischen Anwendungsgebiete empfohlen, bei denen keine speziellen Kreisläufe notwendig sind. Das äußerst günstige Preis/Leistungs-Verhältnis (hohe Umschaltgeschwindigkeit, hohe Anzahl von Betätigungen, erhöhte Durchflußleistung) macht das im Mischsystem hergestellte Ventil besonders attraktiv. Die Bautechnik und die Verwendung spezieller Mischungen für die Dichtungen ermöglichen es, auch ohne Schmierung der Speisungs-Druckluft zu arbeiten.

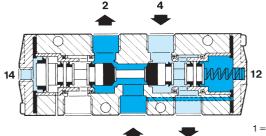
TECHNISCHE DATEN

Gehäuse aus Aluminiumdruckguß Umgebungstemperatur: -10°C ÷ + 45°C Mediumstemperatur: max. +50°C

Betriebsmedium: gefilterte Luft 50 μ m, mit oder ohne

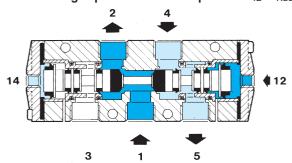

Schmierung

Dichtungen: Nitrilgummi und Vulkollan Steuerung: indirekt elektropneumatisch und

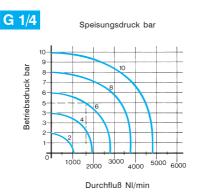

pneumatisch

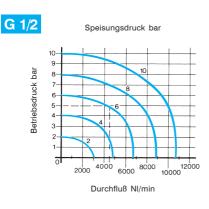
Rücklauf: mit pneumo-mechanischer Feder

Spule U1 Serie DA, U2 Serie DB (U3 Serie DC-... auf Anfrage) (Siehe Abschnitt Zubehör 13-V)

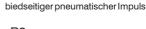

Einseitiger pneumatischer Impuls 2 4

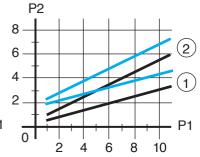

Beidseitiger pneumatischer impuls


1 = Speisung 2-4 = Verbraucher 3-5 = Entlüftung


14 = Steuerung 12 = Rücklauf

ANMERKUNG: Es ist möglich, eine annähernde Schätzung des Faktors "CV" durchzuführen, indem man die in NI/min angegebenen Durchflußwerte durch "962" dividiert



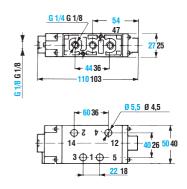


Steuerungsmerkmale

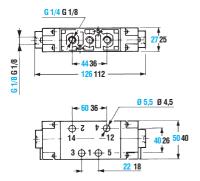
P2 8 6 4 2 2 4 6 8 10

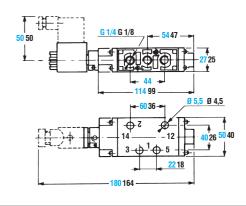
einseitiger pneumatischer Impuls

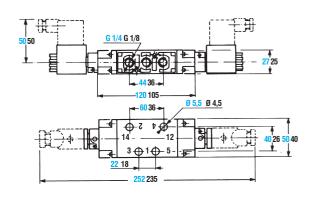
- Steuerung verstärkt
- 2 Differentialsteuerung
- P₁= Speisungsdruck
- P₂= Steuerungsdruck

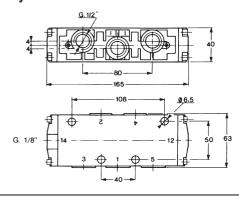


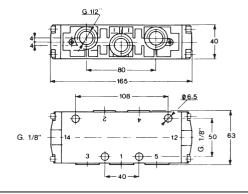
Тур	Symbol	Ansch- Iuß	Steuer. (14)	Rücklauf (12)	Spule		Durchfluß NI/min.	Druck (bar)	Schaltze Erreg. (14)	Aberr. (12)	Masse kg	Artikelnr.								
		G 1/8				6	1080	1,8÷10	8	10	0,22	AC-7100								
	14 12 12 12 14 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	G 1/4	Pneum. verstärkt	Pneum. -mech. Feder		8	1600	1,7÷10	10	10	0,23	AC-8100								
		G 1/2				15	4600	1÷10	10	10	0,76	AC-9100								
	2 4	G 1/8				6	1080	1÷10	5	10	0,23	AC-7120								
	14 2 4 12	G 1/4 Pneum. verstärkt				8	1600	0,8÷10	6	6	0,21	AC-8120								
		G 1/2				15	4600	0,8÷10	8	8	0,77	AC-9120								
		G 1/8			U1	6	1080	1,8÷10	18	20	0,27	AC-7500 —								
	14 T T T T T T T T T T T T T T T T T T T	G 1/4	Elektr. verstärkt		01	8	1600	1,7÷10	22	22	0,28	AC-8500 —								
		G 1/2			U2	15	4600	1÷10	23	30	1,1	AC-9500 —								
	G	G 1/8											U1	6	1080	1÷10	14	14	0,33	AC-7520
14 12 4 12 12 3 1 5 12 12 12 12 12 12 12 12 12 12 12 12 12	G 1/4	Elektr. verstärkt	Elektr. verstärkt		01	8	1600	0,8÷10	14	14	0,31	AC-8520 —								
	315	G 1/2			U2	15	4600	0,8÷10	16	16	1,1	AC-9520 —								

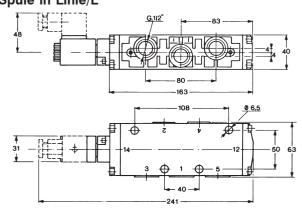

Servosteuerung der Elektroventile G 1/8 und G 1/4 möglich mit eines Servoplättehens zwischens zwischer Pilotventil und Deckel mit Masszunahme in länge von 8 mm pro Pilotventil im Vergleich zu Standardversion. Die Aritkelnummern der Magnetventile verstehen sich exklusive der Spulen.

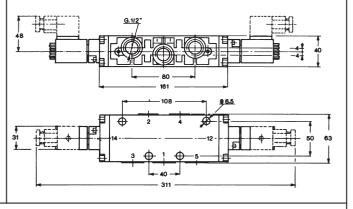

Einseitiger pneumatischer Impuls 5/2 G 1/8 - G1/4


Beidseitiger pneumatischer Impuls 5/2 G 1/8 - G1/4


Einseitiger elektrischer Impuls 5/2 G 1/8 - G1/4 Spule in Linie/L


Beidseitiger pneumatischer Impuls 5/2 G 1/8 - G1/4 Spule in Linie/L


Einseitiger pneumatischer Impuls 5/2 - G 1/2 Mischsystem

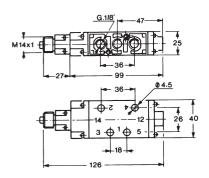

Beidseitiger pneumatischer Impuls 5/2 - G 1/2 Mischsystem

Einseitiger elektrischer Impuls 5/2 - G 1/2 Mischsystem Spule in Linie/L

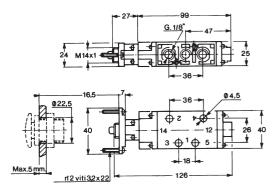
Beidseitiger elektrischer Impuls 5/2 - G 1/2 Mischsystem Spule in Linie/L

1 = Druck, 2-4 = Verbraucher, 3-5 = Entlüftung, 14 = Steuerung, 12 = Rücklauf.

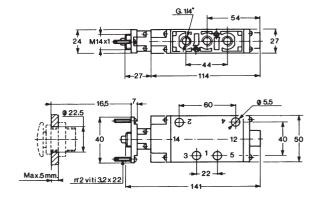
Gewinde-Anchlußventile "MIXED" - Indirekte - mechanische Betätigung 5/2 zur Aufnahme pneumatischier oder mechanischer Aktuatoren

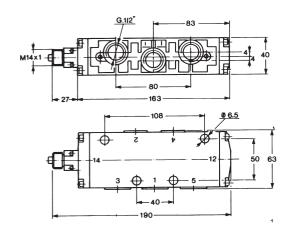


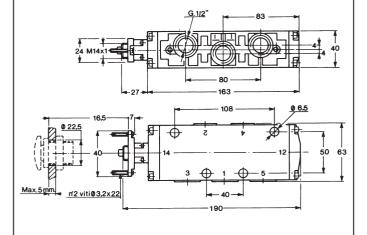
Тур	Symbol	Ansch- luß	Steuer. (14)	Rücklauf (12)	Spule	Ø mm	Durchfluß NI/min.	Druck (bar)	Masse kg	Artikelnr.
		G 1/8			5/2	6	1080	2÷10	0,27	AC-7010
io con	14 2 4 12	G 1/4	Kugelstößel	Pneumo- mechan. Feder	5/2	8	1600	2÷10	0,28	AC-8010
Storeton		G 1/2			5/2	15	4600	2÷10	0,33	AC-9010
Ventile ausgelegt für Scha	alttafelmontage	von Ak	tuatoren	Ø 22						
0.	14 2 4 12 M	G 1/8		Pneumo- mechan. Feder	5/2	6	1080	2÷10	0,28	AC-7013
a salar	14 \(\frac{2}{11}\)\frac{4}{11}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	G 1/8	Kugelstößel	Pneumat Impuls	5/2	6	1080	1÷10	0,29	AC-7013P
0	14 2 4 12 4 M M T T T T T T T T T T T T T T T T T	G 1/4		Pneumo- mechan. Feder	5/2	8	1600	2÷10	0,29	AC-8013
S. F. Sicol	14 2 4 - 12 3 1 5	G 1/4	Kugelstößel	Pneumat Impuls	5/2	8	1600	1÷10	0,28	AC-8013P
At sile les	14 2 4 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	G 1/2	Kuga lată 0 al	Pneumo- mechan. Feder	5/2	15	4600	2÷10	0,84	AC-9013
	14 2 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	G 1/2	Kugelstößel	Pneumat Impuls	5/2	15	4600	1÷10	0,83	AC-9013P


Ein wichttiger Vorteil dieses Modells besteht in der geringen Betätigungskaft, die zahlreiche manuelle Betätigungen ermöglicht ohne große Krafterfordernisse seitens des Bedienungspersonal.

Grundventil mit indirekter Betätigung mittels Kugelstößel 5/2 - G 1/8


Grundventil mit indirekter Betätigung von Schalttafel aus 5/2 - G 1/8


Grundventil mit indirekter Betätigung mittels Kugelstößel 5/2 - G 1/4


Grundventil mit indirekter Betätigung von Schalttafel aus 5/2 - G 1/4

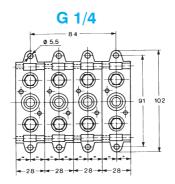
Grundventil mit indirekter Betätigung mittels Kugelstößel 5/2 - G 1/2

Grundventil mit indirekter Betätigung von Schalttafel aus 5/2 - G 1/2

1 = Druck, 2-4 = Verbraucher, 3-5 = Entlüftung, 14 = Steuerung, 12 = Rücklauf.

Тур	Maximale Abmessungen	Bemerkungen	Ansch- lusse	Werkstoff	Masse kg	Artikel- nummer
Eintrittsplatte System Mi	IXED 5/2 - G 1/8					
inkl. Schrauben und Dichtungen	G118" R:2.75	seitliche Anschlüsse	G 1/8	Zamak	0,09	AC-7905
Grundplatte mit Gewinde	eanschlüssen G 1/8					
inkl. Schrauben und Dichtungen	83 36 75	-	G 1/8	Zamak	0,15	AC-7910 (ohne Abluftregler)
Grundplatte mit Gewinde	eanschlüssen G 1/4					
inkl. Schrauben und Dichtungen	101 91 44	-	G 1/4	Zamak	0,22	AC-8910 (ohne Abluftregler)

Abluftregler für Ventile System MIXED - G 1/4 - G 1/8.


Maximale Abmessungen

G 1/8

Vorteile

Die Grundplatte für Ventile der Serie MIXED wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.

- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden
- Die Anzahl der Ventile kann beliebig erweitert oder vermindert werden
- Schneller Zusammenbau mittels serienmäßig integrierter Schraube
- Reduzierte Lagerhaltung
- Einfache technische Handhabung
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Reihe beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung)

Die fortschrittliche Bautechnik, die von UNIVER für das Schiebersystem angewendet wurde, verleiht diesem System überaus interessante Eigenschaften. Das Ventil besteht aus nur zwei Teilen, Gehäuse und Spindel (in einem einzigen Teil), es verfügt über anpassungsfähige Dichtungen (gegen Verklebungen) mit einer hohen Verschleißfestigkeit, die aus einer speziellen Materialmischung hergestellt wurden. Dazu kommt ein hoher Durchfluß und die Tatsache, daß die zwei Kammern während der vorübergehenden Umschaltung (positives Überdecken) nicht miteinander in Verbindung stehen, was eine Schmierung unnötig macht, die Wartung erleichtert und eine beträchtliche Anzahl von Schaltungen erlaubt. Dieses Ventil ist aber nicht nur für die üblichen Anwendungsbereiche des Schiebersystems geeignet, sondern auch für Vakuum zur Verwendung als 5/3-Wege Mittelstellung offen oder 5/3-Wege Mittelstellung geschlossen.

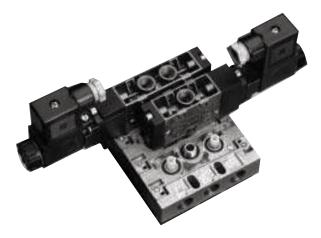
TECHNISCHE DATEN

Gehäuse aus Zamakdruckguß

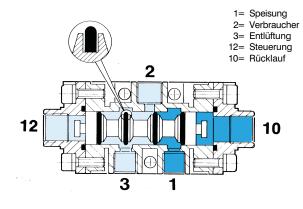
Umgebungstemperatur: -10°C ÷ +50°C

Mediumstemperatur: max. +50°C

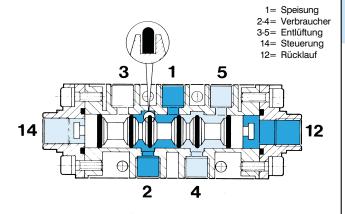
Medium: gefilterte Luft 50 μ m, mit oder ohne Schmierung

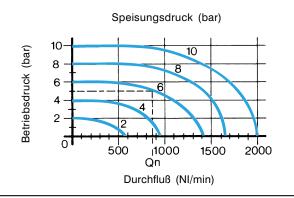

Dichtungen: Nitrilgummi

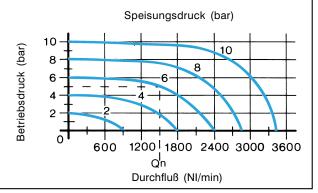
Steuerung: indirekt elektropneumatisch und pneumatisch Rücklauf: mit pneumatischer oder mechanischer Feder Spule außerhalb des mechanischen Teils


Standardspule: U1 (auf Anfrage U3) (Siehe Teil 3, Zubehör, Abs. Spulen)

ANMERKUNG: Es ist möglich, eine annähernde Schätzung des Faktors "CV" durchzuführen, indem man die in NI/min angegebenen Durchflußwerte durch "962" dividiert




UNIVERSAL3/2

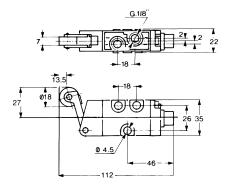

UNIVERSAL 5/2 - 5/3

G 1/8

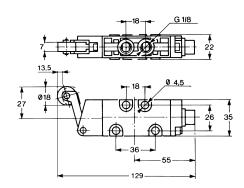
G 1/4

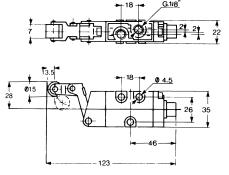
Ventile mit direkter mecha	anischer Betätig	ung								
Тур	Symbol	Steuer. (12) - (14)	Rücklauf (10) - (12)	Wege	Anschluß	Ø (mm)	Durchfluß (NI/min)	Kraft (N)	Masse (kg)	Artikelnr.
6	12 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Mechan. Feder	3/2 NC-NO				23	0,21	CL-100A
	3 1	Rollenhebel	Pneum. Impuls	NC-NO	0.4/0	0.5	000	6		CL-100P
11.	14 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Mechan. Feder	5.0	G 1/8	6,5	890	23	0.05	CM-400A
100	14 1 14 3 15 15		Pneum. Impuls	5/2				6	0,25	CM-400P
3	©	Rollenhebel- Leerrücklauf	Mechan. Feder	3/2	- G 1/8			18	0,22	CL-101A
	12 O T T T		Pneum. Impuls	NC-NO		6,5	890	6	0,22	CL-101P
	O 12 4 12		Mechan. Feder			6,5	090	18	0,26	CM-401A
	14		Pneum. Impuls	3/2				6	0,20	CM-401P
			Mechan. Feder		C 4/0	0.5	000	64	0.40	CL-102A
	12 2 10		Pneum. Impuls	3/2	G 1/8	6,5	890	25	0,19	CL-102P
	M		Mechan. Feder	NC-NO	G 1/4	8,5	1480	68	0,26	CL-9102A
0 11		Kugel-	Pneum. Impuls					26	·	CL-9102P
		stößel	Mechan. Feder		G 1/8	6,5	890	64	0,23	CM-402A
U	14 T T T T T T T T T T T T T T T T T T T		Pneum. Impuls	5/2				25		CM-402P
14					Mechan. Feder Pneum.		G 1/4	8,5	1480	68
			Impuls					26		CM-9402P

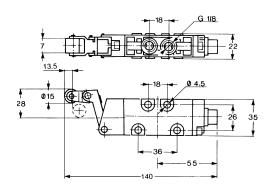
Weitere Ventile

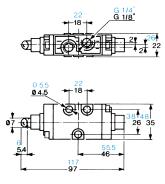

Sitzventile (G 1/8):

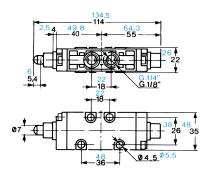
	Rollenstößel mit Staubschutz	Kugelstößel mit Staubschutz	Kugelstößel mit Schrauben für Schalttafeleinbau
3/2 NC-NO	CL-105A	CL-104A	CL-103A
3/2 NC-NO	CL-105P	CL-104P	CL-9103A (G 1/4)
5/2	CM-405A	CM-404A	CM-403A
5/2	CM-405P	CM-404P	CM-9403A (G 1/4)
5/2	-	-	CM-403P
5/2	-	-	CM-9403P (G 1/4)


Die Artikelnummern der Magnetventile verstehen sich exklusive der Spulen

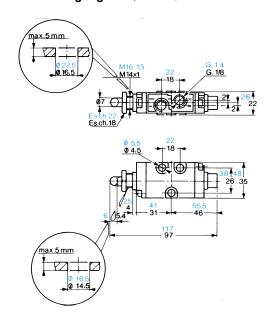

Ventil 3/2 mit Rollenhebel G 1/8


Ventil 5/2 mit Rollenhebel G 1/8

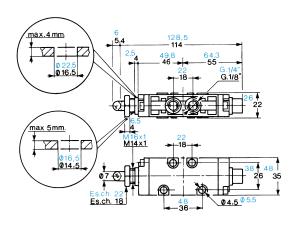

Ventil 3/2 mit Rollenhebel - Leerrücklauf G 1/8


Ventil 5/2 mit Rollenhebel - Leerrücklauf G 1/8

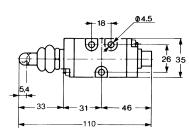
Ventil 3/2 mit Kugelstößel G 1/8 - G 1/4



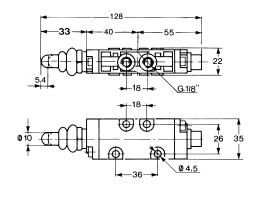
Ventil 5/2 mit Kugelstößel G 1/8 - G 1/4



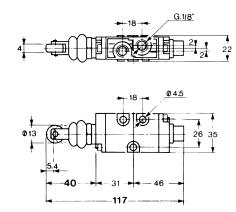
Ventil mit Kugelstößel 3/2 für Schraubenbefestigung - G 1/8 - G 1/4

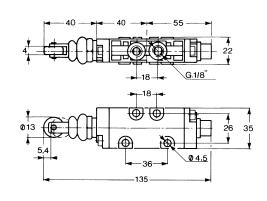


Ventil mit Kugelstößel 5/2 für Schraubenbefestigung - G 1/8 - G 1/4



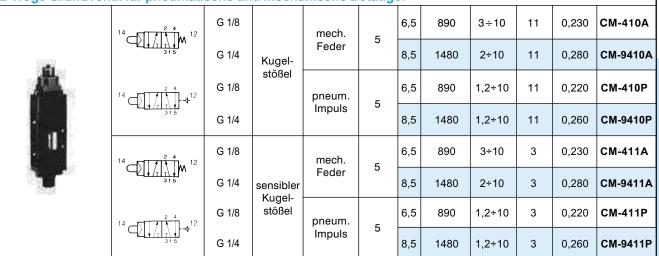
Ventil mit Kugelstößel mit Staubschutz 3/2 - G 1/8


G.1/8" 18 010 18 04.5


Ventil mit Kugelstößel mit Staubschutz 5/2 - G 1/8

Ventil mit Rollenstößel mit Staubschutz 3/2 - G 1/8

Ventil mit Rollenstößel mit Staubschutz 5/2 - G 1/8

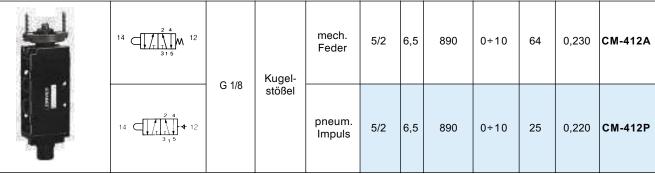


Schieberventile für indirekte mechanische Betätigung

Тур	Symbol	Anschluß	Steuer. (12)	Rücklauf (10)			Durchfluß (NI/min)	Druck bar	Kraft (N)	Masse kg	Artikelnr.
3/2 Wege Grundver	til für pneumat	ische un	d mecha	anische B	etätig	er					
	12 2 10	G 1/8		mech.	3/2 NC	6,5	890	2,5÷10	11	0,190	CL-110A
ái.		G 1/4	Kugel-	Feder	3/2 NC	8,5	1480	2÷10	11	0,260	CL-9110A
	12 7 7 410	G 1/8	stößel	pneum.	3/2 NC	6,5	890	1÷10	11	0,180	CL-110P
4		G 1/4		Impuls	3/2 NC	8,5	1480	1÷10	11	0,240	CL-9110P
5-II.	12 2 10	G 1/8		mech.	3/2 NC	6,5	890	2,5÷10	3	0,190	CL-111A
	3 1	G 1/4	sensibler	Feder	0/2 110	8,5	1480	2÷10	3	0,260	CL-9111A
12	12 7 7 10	G 1/8	Kugel- stößel	pneum.	2/2 NC	6,5	890	1÷10	3	0,180	CL-111P
	G 1/4		Impuls	3/2 NC	8,5	1480	1÷10	3	0,240	CL-9111P	
Für 2/2-Wege Funktion Entlüftung mit Stopfen verschließen.											

5/2-Wege Grundventil für pneumatische und mechanische Betätiger

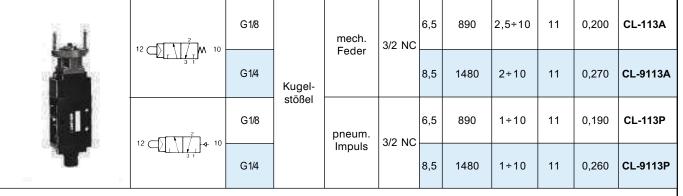
Diese Ventile mit den Betätigern - Abschnitt Zubehör - stellen eine Alternative zu den Ventilen mit Direktbetätigung dar. Sie können mit allen manuellen Betätigungen ohne Zusatz Q kombiniert werden. Ihre Verwendung wird überall da empfohlen, wo Betätigungen mit begrenzter Kraft verlangt werden.



Тур	Symbol	Anschluß	Steuer. (12)	Rücklauf (10)		Ø mm	Durchfluß NI/min	Druck bar	Kraft N	Masse kg	Artikeln
3/2-Wege Grundver	ntil für Wandtafe	laktuato	ren - dir	ekte mec	hanisc	he	Betätigu	ng		-	-
	NC 12	C 1/9	Kugel-	mech. Feder	3/2 NC-NO	6,5	890	0÷10	64	0,190	CL-112A
	NC 12	G 1/8	stößel	pneum. Impuls	3/2 NC-NO	6,5	890	0÷10	25	0,180	CL-112P

Die Verwendung dieses Ventils ist in all den Fällen zweckmässig, in denen die manuelle Betätigung nicht sehr oft zum Einsatz kommt, andernfalls indirekt betätigte Ventile verwenden. Für die 2/2-Wege Funktion Entlüftung mit Stopfen verschließen.

Kombinierbar mit manuellen Aktuatoren mit Zusatzbuchstaben Q (siehe Abschnitt Zubehör Seite 19-IV).

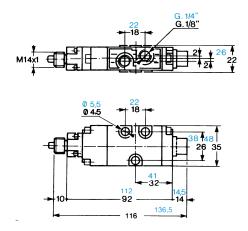

5/2-Wege Grundventil für Wandtafelaktuatoren - direkte mechanische Betätigung

Ein wichtiger Vorteil dieses Modells besteht in der geringen Betätigungskraft, die zahlreiche manuelle Betätigungen ermöglicht ohne große Krafterfordernisse seitens des Bedienungspersonals. Auf Anfrage ist Version NO lieferbar.

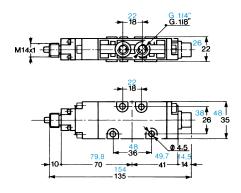
Kombinierbar mit manuellen Aktuatoren mit Zusatzbuchstaben Q zur Typenbezeichnung (Abschnitt Zubehör Seite 21-IV).

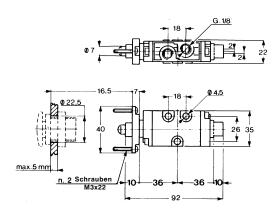
3/2-Wege Grundventil für Wandtafelaktuatoren - indirekte mechanische Betätigung

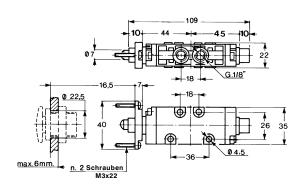
Ein wichtiger Vorteil dieses Modells besteht in der geringen Betätigungskraft, die zahlreiche manuelle Betätigungen ermöglicht ohne große Krafterfordernisse seitens des Bedienungspersonals.

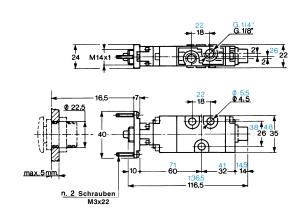

5/2-Wege Grundventil für Wandtafelaktuatoren - indirekte mechanische Betätigung

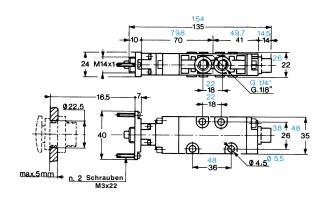
لها	14 - 12 M 12	G 1/8		mech.	5/2	6,5	890	3÷10	11	0,240	CM-413A
	\(\frac{1}{3\infty}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	G 1/4	Kugel-	Feder		8,5	1480	2÷10	11	0,290	CM-9413A
. 41:	14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	G 1/8	stößel	pneum.	5/2	6,5	890	1,2÷10	11	0,230	CM-413P
1	<u> </u>	G 1/4		Impuls		8,5	1480	1,2÷10	11	0,280	CM-9413P


Kombinierbar mit manuellen Aktuatoren mit Zusatzbuchstaben Q zur Typenbezeichnung (Abschnitt Zubehör Seite 19-IV).


Grundventil 3/2 mit indirekter Steuerung durch Kugelstößel und sensiblem Kugelstößel G 1/8 - G 1/4

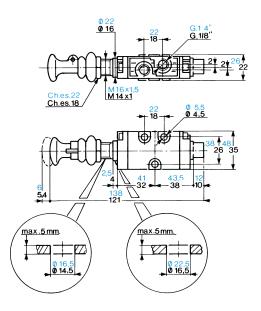

Grundventil 5/2 mit indirekter Steuerung durch Kugelstößel und sensiblem Kugelstößel G 1/8 - G 1/4

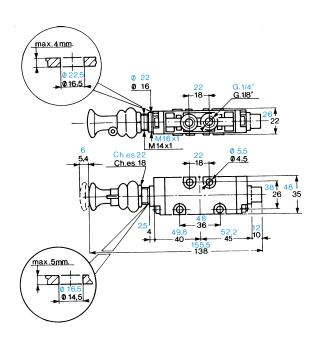

Grundventil 3/2 mit direkter Steuerung von Schalttafel aus G 1/8

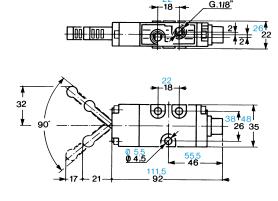

Grundventil 5/2 mit direkter Steuerung von Schalttafel aus G 1/8

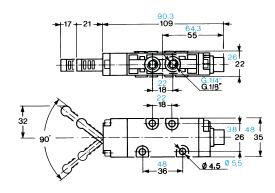
Grundventil 3/2 mit indirekter Steuerung von Schalttafel aus G 1/8 G 1/8 - G 1/4

Grundventil 5/2 mit indirekter Steuerung von Schalttafel aus G 1/8 - G 1/4

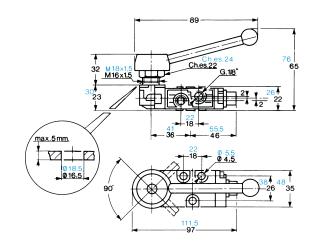



Ventile mit manueller Betä	ätigung									
Тур	Symbol	Steuer. (12) - (14)	Rücklauf (10) - (12)	Wege	Anschlüsse	Ø (mm)	Durchfluß (NI/min)	Kraft (N)	Masse (kg)	Artikelnr.
0 200	12 / 10			3/2	G 1/8	6,5	890	25	0,19	ohne Vorrichtung
		Druck-	mech.	NC-NO	G 1/4	8,5	1480	26	0,26	ohne Vorrichtung CL-9120A
Druck-Zugknopf: Y: CP-911G - Gelb R: CP-911R - Rot	14 (12) 14 (14) 12 14 (15) 12 15) 15 15 15 15 15 15 15	Zugknopf	Feder	5/2	G 1/8	6,5	890	25	0,22	ohne Vorrichtung CM-420A
B: CP-911N - Scwarz G: CP-911V - Grün	V—(±/T T\±)V\ 315				G 1/4	8,5	1490	26	0,26	ohne Vorrichtung CM-9420A
	12 / 10	* Lang-		3/2	G 1/8	6,5	890	10÷20	0,17	CL-118R* CL-119R
-CEID		hebel	mech.	NC-NO	G 1/4	8,5	1480	11	0,23	CL-9118R*
Serienmäßig Hebel in rot. Auf Anfrage:	14 AMT FIR 12	Kurz-	Feder	5/2	G 1/8	6,5	890	10÷20	0,21	CM-418R* CM-419R
GELB (G) GRÜN (V) SCHWARZ (N)	6-11/TIT\1"	hebel			G 1/4	8,5	1490	11	0,25	CM- 9418R*
	12 / 10			3/2	G 1/8	6,5	890	27	0,22	ohne Vorrichtung CL-130
	3 1	Drehl	nebel nfrage	NC-NO	G 1/4	8,5	1480	29	0,25	ohne Vorrichtung CL-9130
	14	Schalter)		5/2	G 1/8	6,5	890	27	0,25	ohne Vorrichtung CM-430
	6 ↓/IIT\↓ 3 i 5			0,2	G 1/4	8,5	1490	29	0,27	ohne Vorrichtung CM-9430
	14 / 12 12	3 stabile F			G 1/8	6,5	890	27	0,25	CM-430E
0 70	14/11/11/11/11/11/11/11/11/11/11/11/11/1	Mittels geschi	lossen		G 1/4	8,5	1480	29	0,27	CM-9430E
	14 AWT 7 12	3 stabile F	abile Positionen		G 1/8	6,5	890	27	0,24	CM-435E
Artikelnr. CP-915R Artikelnr.	√ 	Mittelstell	ung offen	5/3	G 1/4	8,5	1480	29	0,26	CM-9435E
CP-916R	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 stabile F			G 1/8	6,5	890	27	0,24	CM-440E
		Mittels unter			G 1/4	8,5	1480	29	0,26	CM-9440E
	12 6 1 1 10			3/2	G 1/8	6,5	890	2,5÷4	0,17	ohne Vorrichtung
	7 7 7 7	Hebel	Hebel	NC-NO	G 1/4	8,5	1480	2,7÷4,5	0,23	ohne Vorrichtung
9 👋	14 /			5/2	G 1/8	6,5	890	2,5÷4	0,23	ohne Vorrichtung
					G 1/4	8,5	1480	2,7÷4,5	0,28	ohne Vorrichtung CM-9423
1	14 / 12	Hebelste			G 1/8	6,5	890	3,5÷5	0,23	ohne Vorrichtung CM-423E
	315	Mittels geschl			G 1/4	8,5	1480	3,6÷5,2	0,28	ohne Vorrichtung CM-9423E
	14 /	Hebelste		E/0	G 1/8	6,5	890	3,5÷3	0,23	ohne Vorrichtung CM-424E
Kurze Hebel: Y: CP-912G R: CP-912R	315	Mittelstell		5/3	G 1/4	8,5	1480	3,6÷5,2	0,28	ohne Vorrichtung CM-9424E
B: CP-912N G: CP-912V	14 666 7 1 1 1 1 1 1 1 2	Hebelste			G 1/8	6,5	890	7,5÷5	0,23	ohne Vorrichtung CM-425E
Langer Hebel: R: CP-913R	315	Mittels unter			G 1/4	8,5	1480	3,6÷5,2	0,28	ohne Vorrichtung CM-9425E

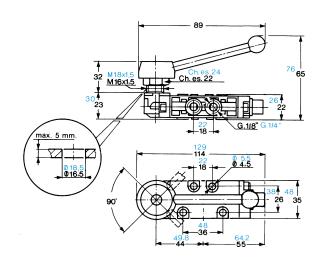

Ventil 3/2 mit Druck-Zugknopf G 1/8 - G 1/4

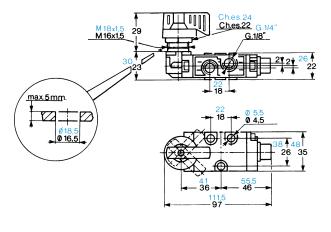

Ventil 5/2 mit Druck-Zugknopf G 1/8 - G 1/4

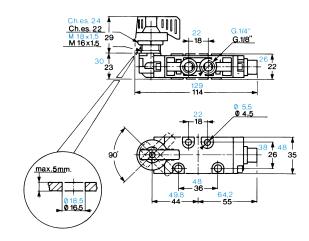
Ventil 3/2 mit langem und kurzem Hebel vorne G 1/8 - G 1/4

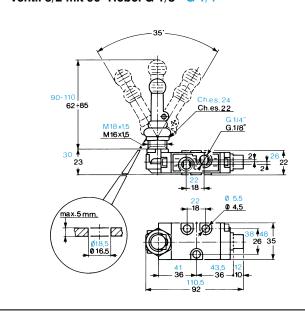


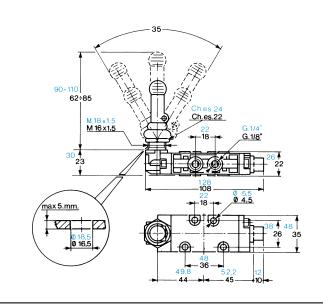
Ventil 5/2 mit langem und kurzem Hebel vorne G 1/8 - G 1/4




Ventil 3/2 mit Drehhebel G 1/8 - G 1/4


Ventil 5/2 - 5/3 mit Drehhebel G 1/8 - G 1/4


Ventil 3/2 mit Drehschalter G 1/8 - G 1/4


Ventil 5/2 - 5/3 mit Drehschalter G 1/8 - G 1/4

Ventil 3/2 mit 90° Hebel G 1/8 - G 1/4

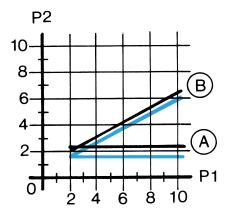
Ventil 5/2 - 5/3 mit 90° Hebel G 1/8 - G 1/4

Schieberventile mit pneumatischer Betätigung

Тур	Symbol	Anschluß	Steuer. (12)	Rücklauf (10)	l Weae	Ø mm	Durchfluß NI/min	Druck bar		eiten ms Aberr.(10)	Masse kg	Artikelnr.
Einseitiger pneum	atischer Impu	ls										
	12 - 10	G 1/8	pneum.	pneum.	3/2 NC	6,5	890	2,3÷10	11	14	0,200	CL-200
	3 1	G 1/4	verstärkt	Feder	0/2 110	8,5	1480	2÷10	13	16	0,230	CL-9200
1	10		verstärkt	pneum. Feder	3/2 NO	6,5	890	2,3÷10	11	14	0,200	CL-203
	* 1 / 1 3 1	G 1/4			0,2 110	8,5	1480	2÷10	13	16	0,230	CL-9203
	NC 2 12 10 10	G 1/8	pneum.	mechan.	3/2	6,5	890	2,5÷10	9	17	0,210	CL-200A
	NO 12 - → 1	G 1/4	verstärkt	Feder	NC-NO	8,5	1480	2÷10	10	19	0,240	CL-9200A

Für Vakuumbetrieb Modell mit mechanischer Feder wählen.

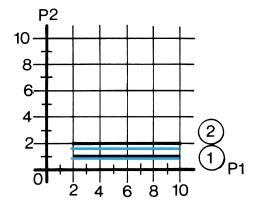
Beidseitiger pneumatischer Impuls


02	12 10	G 1/8	pneum.	pneum.	3/2 NC	6,5	890	1÷10	6	6	0,160	CL-220
		G 1/4	verstärkt	verstärkt	3/2 NC	8,5	1480	1÷10	8	8	0,210	CL-9220
	12 10 - 10 -	G 1/8	pneum.	pneum.	3/2 NO	6,5	890	1,7÷10	6	8	0,150	CL-221
12		G 1/4	verstärkt	differential		8,5	1480	1,5÷10	8	10	0,220	CL-9221
	12 - D 7 7 4-0	G 1/8	pneum. verstärkt	pneum. differential	NC-NO	6,5	890	1,7÷10	8	8	0,140	CL-224
		G 1/4				8,5	1480	1,5÷10	10	10	0,240	CL-9224

Auch für Vakuumbetrieb geeignet

STEUERUNGSEIGENSCHAFTEN 3/2-WEGE

G 1/8 G 1/4


Einseitiger pneumatischer Impuls

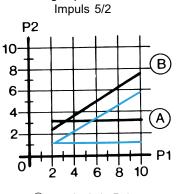
A= Mechanische Feder **B**= Pneumatische Feder

 P_1 = Speisungsdruck P₂ = Steuerungsdruck

Beidseitiger pneumatischer Impuls

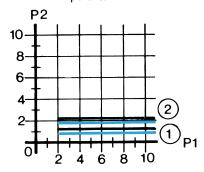
①= Steuerung verstärkt ②= Differentialsteuerung

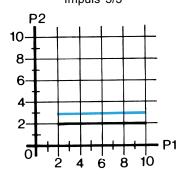
Für die 2/2-Wege Funktion Entlüftung mit Stopfen verschließen.


neumatische Betätig	ung 5/2 - 5/3, G	1/8 - G 1⁄4									®	
Тур	Symbol	Steuer. (14)	Rücklauf (12)	Wege	Ø mm	Durchfluß NI/min	Druck bar		eiten ms Aberr.(10)	Masse kg	Artikelnr.	
Einseitiger pneumati	ischer Impuls											
	14 2 4 12	pneum.	pneum.	5/2	6,5	890	2,5÷10	10	15	0,200	CM-500	
1	3 1 5	verstärkt Feder		-,	8,5	1480	2÷10	13	16	0,260	CM-9500	
	14 M 12	pneum.			6,5	890	3÷10	10	18	0,190	CM-500A	
	315	verstärkt	Feder	5/2	8,5	1480	2÷10	11	20	0,170	CM-9500A	
Für Vakuumbetrieb Model	I mit mechanischer	Feder wählen										
Beidseitiger pneuma	tischer Impuls											
72-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	14, 17, 12	pneum.	pneum.	5/2	6,5	890	1,2÷10	7	7	0,180	CM-520	
	315	verstärkt	verstärkt	verstärkt	υ/ Ε	8,5	1480	1,5÷10	9	9	0,240	CM-9520
	14	pneum.	pneum.	5/2	6,5	890	2÷10	7	9	0,190	CM-521	
	315	verstärkt	differential	5/2	8,5	1480	1,8÷10	9	10	0,250	CM-9521	
4	14 12	pneum.	pneum.	5/2	6,5	890	2÷10	9	9	0,200	CM-524	
***************************************	315	differential	differential	5/2	8,5	1480	1,8÷10	10	10	0,270	CM-9524	
Auch für Vakuumbetrieb	geeeignet.											
5/3 – geschlossene I	Mittelstellung – d	offene Mitte	elstellung	– Mit	telst	ellung	unter	Druck	(
	14 MT 7 12 1 T W 12	geschlo		5/3	6,5	890	2,5÷10	8	12	0,210	CM-580	
	▶ 				8,5	1480	2,8÷10	10	13	0,300	CM-9580	

	14 M 12 M 12	geschlossene Mittelstellung	5/3	6,5	890	2,5÷10	8	12	0,210	CM-580
	▶ <u> • / + + + + • • • • • • </u>	Pneum, Betätigung	5/5	8,5	1480	2,8÷10	10	13	0,300	CM-9580
	14 M 12 315 4-1	Pneum, Betätigung	5/3	6,5	890	2,5÷10	8	12	0,210	CM-585
			5,5	8,5	1480	2,8÷10	10	13	0,300	CM-9585
			5/3	6,5	890	2,5÷10	8	12	0,210	CM-590
			5/3	8,5	1480	1,8÷10	10	13	0,300	CM-9590

Auch für Vakuumbetrieb geeignet.


STEUERUNGSEIGENSCHAFTEN 5/2 - 5/3


Einseitiger pneumatischer

A = mechanische FederB = pneumatische Feder

Beidseitiger pneumatischer Impuls 5/2

Bidseitiger pneumatischer Impuls 5/3

① = Steuerung verstärkt ② = Differentialsteuerung

P₁ = Speisungsdruck P₂= Steuerungsdruck

G 1/8 G 1/4

				L	l	l			Schaltz	aitan me	Typ Anschlüsse Symbol Steuer. (12) Rücklauf (10) Wege mm Durchfluß (NI/min) Druck bar Err. (12) Aberr. (10) Handbetät kg Artikelnr.										
Тур	Anschlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm							Artikelnr.								
Einseitiger elektris	cher In	npuls - Spule	in Linie	/ L	l .																
											Θ		CL-300								
	G 1/8	12 HCT \$\frac{2}{1} 10		pneum.	3/2	6,5	890	2,3÷10	23	19	1	0,200	CL-300R								
	0.4/4			Feder	NC	8,5	1480	2÷10	24	28	Θ	0,270	CL-9300								
	G 1/4					0,5	1400	2+10	24	20	Ĺ	0,270	CL-9300R								
	G 1/8					6,5	890	2,3÷10	23	19	Θ	0,200	CL-301								
		12		pneum. Feder	3/2 NO	,		,			<u></u>	,	CL-301R								
	G 1/4	3	elektr.	reder		8,5	1480	2÷10	24	28	1	0,270	CL-9301 CL-9301R								
			Verstärkt spule in								Θ		CL-302A								
400	G 1/8	12 2 10	Spule		3/2	6,5	890	2,5÷10	20	24	L L	0,210	CL-302R								
	0.4/4			mechan. Feder	NC						Θ		CL-9302A								
	G 1/4					8,5	1480	2÷10	22	35	Ĺ	0,280	CL-9302R								
	G 1/8					6,5	890	2,5÷10	20	24	Θ	0,210	CL-303A								
	G 1/6	12 7 10 10		mechan.	3/2	0,5	090	2,3+10	20	24	Ĺ	0,210	CL-303R								
2000	G 1/4	3 1		Feder	NO	8,5	1480	2÷10	22	35	Θ	0,280	CL-9303A								
Einseitiger elektris	sobor Ir	nnule Snule	um 00° v	ordrok	+ / LI						<u> </u>		CL-9303R								
Elliseitiger elektris	SCITET II	iipuis - Spuie	uiii 90 V	/erurer	П / П						Θ		CL 205								
100	G 1/8	2			3/2	6,5	890	2,5÷10	25	21	1	0,230	CL-305 CL-305R								
		12 10		pneum. Feder	NC						Θ		CL-9305								
	G 1/4	- 152_1		1 0001		8,5	1480	2÷10	26	42	1	0,300	CL-9305R								
	0.1/0					٥.	000	0.5.40	0.5	0.4	Θ	0.000	CL-306								
	G 1/8	12 2 10		pneum.		6,5	890	2,5÷10	25	21	Ĺ	0,230	CL-306R								
S. E. E. C. S. C.	G 1/4	VV [1] [1]	elektr.	Feder	NO	8,5	1480	2÷10	26	42	Θ	0,300	CL-9306								
	G 1/4		verstärkt Spule um			0,0	1400	2.10	20	72	L	0,000	CL-9306R								
(3)	G 1/8		. 90°		3/2	6,5	890	2,5÷10	22	26	Θ	0,240	CL-307A								
		12 T T M 10	verdreht	mechan.	NC						<u>L</u>		CL-307R CL-9307A								
	G 1/4	3 1		Feder		8,5	1480	2÷10	23	37	<u>⊖</u>	0,310	CL-9307A								
														Θ		CL-308A					
	G 1/8	12 HAT VIA. 10		mechan.	3/2	6,5	890	2,5÷10	22	26		0,240	CL-308R								
AL MAN	0.4/4	<u>∆</u> M		Feder	NO	٥٠	4400	0.40	00	0.7	Θ	0.040	CL-9308A								
CHTRESIC	G 1/4					8,5	1480	2÷10	23	37	Ĺ	0,310	CL-9308R								
Einseitiger elektris	scher Ir	npuls - Spule	parallel	/ P																	
	G 1/8					6.5	890	2,3÷10	27	23	Θ	0,240	CL-309								
	G. 1,0	12 7 10		pneum.	3/2	0,0	000	2,0 10		20	L	0,240	CL-309R								
	G 1/4	3 1		Feder	NC	8,5	1480	2÷10	28	44	Θ	0,310	CL-9309 CL-9309R								
A STATE OF											1										
	G 1/8	12 + 10			_,_	6,5	890	2,3÷10	27	23	Θ 1	0,240	CL-310 CL-310R								
				pneum. Feder	3/2 NO						Θ		CL-9310								
	G 1/4		elektr. verstärkt			8,5	1480	2÷10	28	44	1	0,310	CL-9310R								
SR	0.4/0		parallel			_					Θ		CL-311A								
A STATE OF THE PARTY OF THE PAR	G 1/8	12 10 10		mechan.	3/2	6,5	890	2,5÷10	24	28	Ĺ	0,250	CL-311R								
33/6	G 1/4			Feder	NC	8,5	1480	2÷10	26	39	Θ	0,320	CL-9311A								
2	,					3,3	. 150	0			Ĺ	5,520	CL-9311R								
	G 1/8					6,5	890	2,5÷10	24	28	Θ	0,250	CL-312A								
-		12 M 10		mechan. Feder	3/2 NO						<u>L</u>		CL-312R								
	G 1/4	3 1		i edel	140	8,5	1480	2÷10	26	39	⊖1	0,320	CL-9312A CL-9312R								
Serienmäßig mit Spule U1, a	uf Anfrage	Spule U3.	<u> </u>		<u> </u>							mit Schrau	ben 2 Positionen								
Ideal für Vakuumbetrieb und bei Niederdruck usw.). Redu	für alle mit d zierte Höh	der Umlaufspannung e. Reihenmontage m	zusammenh nöglich mit Au	ängenden l Isnahme d	Problem er Mode	e (Eing	gang über t Spule/H.	die Entlü	ftungen, E	Betrieb			Positionen								
Die Typenbezeichnungen v	erstehen	sich ohne Spulen	- '																		

Тур	An- schlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm	Durchfluß (NI/min)	Didok	Schaltzei Err. (12)		Hand- betät	Masse kg	Artikelnr.
Beidseitiger elektri	ischer	Impuls - Spu	le in Lini	e / L			•	-				•	
<u>~</u>	G 1/8	2				6,5	890	1÷10	17	17	Θ 1_	0,240	CL-320 CL-320R
	G 1/4	12 7 7 7 10		elektr. verstärkt	3/2	8,5	1480	2÷10	18	18	Θ	0,290	CL-9320
1000	G 1/8		Flat de			6,5	890	1,7÷10	17	20	Ĺ ⊝	0,240	CL-9320R CL-321
	G 1/4	12 7 7 10	Elektr. verstärkt Spule in Linie	elektr. differential	3/2	8,5	1480	1,5÷10		22	<u>↑</u>	0,300	CL-321R CL-9321
2	G 1/4					0,0	1400	1,3 10	10	22	Ĺ Θ	0,300	CL-9321R CL-322
	G 1/8	12 D T 10		pneum. Impuls	3/2	6,5	890	2,5÷10	20	7	Ĺ	0,210	CL-322R
	G 1/4	3 1		verstärkt		8,5	1480	2÷10	22	8	⊖ Ĺ	0,260	CL-9322 CL-9322R
Beidseitiger elektri	scher	Impuls - Spu	e um 90°	verdre	ent / H	1				I			
2 No.	G 1/8	12 HG 17 7 7 10		elektr.		6,5	890	1÷10	19	19	⊖ <u>1</u>	0,270	CL-325 CL-325R
	G 1/4			verstärkt	3/2	8,5	1480	1÷10	20	20	⊖ 1_	0,350	CL-9325 CL-9325R
	G 1/8	2	elektr.			6,5	890	1,7÷10	19	22	⊝	0,270	CL-326 CL-326R
2 0	G 1/4		verstärkt Spule um 90°verdrent	elektr. differential	3/2	8,5	1480	1,5÷10	20	24	Θ 1_	0,360	CL-9326 CL-9326R
	G 1/8					6,5	890	1÷10	19	7	Θ	0,230	CL-327
	G 1/4	12 7 7 10		pneum. Impuls verstärkt	3/2	8,5	1480	1÷10	20	8	<u>↑</u>	0,390	CL-327R CL-9327
Daidaaitiaay alaktii		Immula Cau	le menelle	L/D							Ĺ		CL-9327R
Beidseitiger elektri	G 1/8	impuis - Spu	e paraile	er/P		6,5	890	1÷10	21	21	Θ	0,280	CL-329
	G 1/4	12 7 7 10		elektr. verstärkt	3/2	8,5	1480	1÷10	22	22	<u>↑</u>	0,360	CL-329R CL-9329
-	G 1/8		_1,1,1			6,5	890	1,7÷10	21	24	<u>↑</u>	0,280	CL-9329R CL-330
100	12 7 7 7	12 7 7 10	elektr. verstärkt Spule parallel	elektr. differential	3/2		1480		22	25	<u>↑</u>	,	CL-9330
	G 1/4		paraner			8,5	1460	1,5÷10	22	20	Ĺ ⊝	0,370	CL-9330R CL-331
	G 1/8	12 T T 10		pneum. Impuls	3/2	6,5	890	1÷10	21	7	1_	0,240	CL-331R
Sorionmäßig mit Saula III	G 1/4	Soulo LI2		verstärkt.		8,5	1480	1÷10	22	8	⊖ <u>L</u>	0,300	CL-9331 CL-9331R
Serienmäßig mit Spule U1, au Ideal für Vakuumbetrieb und fibei Niederdruck usw.). Reduz Die Typenbezeichnung	ür alle mit zierte Höh	der Umlaufspannung e. Reihenmontage n	nöglich mit Au	ängenden l Isnahme d	Problemer Mode	e (Ein	gang über t Spule/H.	die Entlüft	ungen, Be	etrieb	_		pen 2 Positionen Positionen

Elektrisch betätigte Schieberventile mit externer Servosteuerung

Тур	An- schlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm	Durchfluß (NI/min)	Druck bar		eiten ms Aberr. (10)	Hand- betät.	Masse kg	Artikelnr.								
Einseitiger elektris	cher I	mpuls - Spule	in Linie	/ L																	
	G 1/8	12 + 10		pneum.	3/2	6,5	890	2,3÷10	23	19	⊖ 1_	0,230	CL-340 CL-340R								
	G 1/4			Feder	NC	8,5	1480	2÷10	24	28	⊖ <u>1</u>	0,300	CL-9340 CL-9340R								
11 11	G 1/8	12 2 10	elektr.		0/0	6,5	890	2,3÷10	23	19	⊝ <u>1</u>	0,230	CL-341 CL-341R								
9	G 1/4	3 1	verstärkt Spule in Linie	pneum. Feder	3/2 NO	8,5	1480	2÷10	24	28	⊝ £	0,300	CL-9341 CL-9341R								
The same of the sa	G 1/8	12 10				6,5	890	2,5÷10	20	24	⊖ <u>1</u>	0,240	CL-342A CL-342R								
	G 1/4	7 7 1 M		mechan. Feder	3/2 NC-NO	8,5	1480	2÷10	22	35	⊖ 1_	0,260	CL-9342A CL-9342R								
Einseitiger elektris	cher Ir	npuls - Spule	um 90° v	erdreh	t / H																
	G 1/8	12 2 10		pneum.	3/2	6,5	890	2,3÷10	25	21	⊝	0,260	CL-345 CL-345R								
	G 1/4	3,1		Feder	NC	8,5	1480	2÷10	26	42	⊝ <u>1</u>	0,330	CL-9345 CL-9345R								
	G 1/8	12 10 10 10	elektr.	pneum.	3/2	6,5	890	2,3÷10	25	21	⊝ <u>1</u>	0,260	CL-346 CL-346R								
الم	G 1/4	3 1	verstärkt Spule um 90° verdrent	Feder	NO	8,5	1480	2÷10	26	42	⊝ <u>1</u>	0,330	CL-9346 CL-9346R								
d	G 1/8	NC 12 12 10 10		mechan.	3/2	6,5	890	2,5÷10	22	26	⊖ <u>1</u>	0,270	CL-347A CL-347R								
	G 1/4	NO 12 2 10		Feder	NC-NO	8,5	1480	2÷10	24	37	⊝ <u>1</u>	0,340	CL-9347A CL-9347R								
Einseitiger elektris	cher Ir	mpuls - Spule	parallel	/ P																	
2 m	G 1/8	12 10		pneum.	3/2	6,5	890	2,3÷10	27	23	⊖ <u>1</u>	0,270	CL-349 CL-349R								
	G 1/4	3,1		Feder	NC	8,5	1480	2÷10	28	44	⊝ 1	0,340	CL-9349 CL-9349R								
=	G 1/8	12 10 10 10	elektr.	ppoum	nneum	pneum	pneum.	pneum.	pneum.			1	3/2	6,5	890	2,3÷10	27	23	⊖ <u>1</u>	0,270	CL-350 CL-350R
	G 1/4	9 3	vestärkt Spule parallel	arkt pneum. Ile Feder	NO NO	8,5	1480	2÷10	28	44	⊖ <u>1</u>	0,340	CL-9350 CL-9350R								
	G 1/8 12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,	mechan.		3/2	6,5	890	2,5÷10	24	28	⊖ <u>1</u>	0,280	CL-351A CL-351R							
=	G 1/4	NO 12 2 10		Feder	NC-NO	8,5	1480	2÷10	24	39	⊝ <u>1</u>	0,350	CL-9351A CL-9351R								
Serienmäßig mit Spule U1, a Ideal für Vakuumbetrieb und f bei Niederdruck usw.). Redu Die Typenbezeichnung	ür alle mit zierte Höh	der Umlaufspannung ne. Reihenmontage n		ängenden Isnahme d	Problem er Mode	e (Ein	gang über t Spule/H.	die Entlüf	tungen, B	etrieb	_		ben 2 Positinen Positionen								

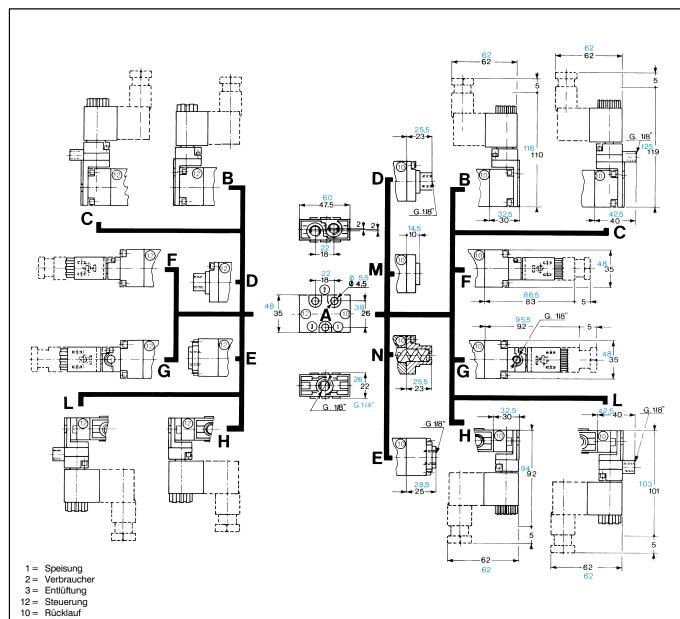
Тур	An- schlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm	Durchfluß (NI/min)	Didok	Schaltze Err. (12)		1	Masse kg	Artikelnr.
Beidseitiger elektri	scher	Impuls - Spu	le in Lini	e / L									
	G 1/8	12 17 7 10		elektr.	0/0	6,5	890	1÷10	17	17	⊝1	0,270	CL-360 CL-360R
1	G 1/4			verstärkt	3/2	8,5	1480	1÷10	18	18	⊝1	0,350	CL-9360 CL-9360R
	G 1/8	12 HST \$1 7 H 10	elektr. verstärkt	elektr.		6,5	890	1,7÷10	17	20	⊖ 1	0,260	CL-361 CL-361R
6	G 1/4		Spule in Linie	differential	3/2	8,5	1480	1,5÷10	18	22	⊝ £	0,360	CL-9361 CL-9361R
	G 1/8	12 + 10 10		pneum.		6,5	890	1÷10	17	7	⊝ £	0,230	CL-362 CL-362R
	G 1/4			Impuls verstärkt	3/2	8,5	1480	1÷10	18	8	⊝ 1	0,290	CL-9362 CL-9362R
Beidseitiger elektri	scher	Impuls - Spul	e um 90°	verdre	eht / H								
	G 1/8	12 45 7 7 7 10		elektr.		6,5	890	1÷10	19	19	Θ 1	0,300	CL-365 CL-365R
	G 1/4			verstärkt.	3/2	8,5	1480	1÷10	20	20	⊝1	0,410	CL-9365 CL-9365R
-0-	G 1/8	12 hr + 1 10	elektr. verstärkt	elektr.	- (-	6,5	890	1,7÷10	19	22	⊖ 1	0,300	CL-366 CL-366R
و الم	G 1/4		Spule um 90° verdrent	differential	3/2	8,5	1480	1,5÷10	20	24	Θ 1	0,420	CL-9366 CL-9366R
5-	G 1/8	12 		pneum.	- /-	6,5	890	1÷10	19	7	⊖L	0,260	CL-367 CL-367R
	G 1/4			Impuls verstärkt	3/2	8,5	1480	1÷10	20	8	⊖ <u>1</u>	0,320	CL-9367 CL-9367R
Beidseitiger elektri	ischer	Impuls - Spu	le paralle	I/P				1				1	
	G 1/8	12 12 17 7 7 10		elektr.	- /-	6,5	890	1÷10	21	21	⊝11	0,310	CL-369 CL-369R
	G 1/4			verstärkt	3/2	8,5	1480	1÷10	22	22	⊖ 1_	0,420	CL-9369 CL-9369R
	G 1/8	12 HC 17 H 10	elektr. verstärkt	elektr.	0/0	6,5	890	1,7÷10	21	24	⊖ <u>1</u>	0,310	CL-370 CL-370R
	G 1/4		verstärkt Spule parallel	ärkt elektr. ule differential	3/2	8,5	1480	1,5÷10	22	25	⊖ <u>1</u>	0,430	CL-9370 CL-9370R
Q = .	G 1/8	12		pneum.	3/2	6,5	890	1÷10	21	7	⊖11	0,260	CL-371 CL-371R
	G 1/4			Impuls verstärkt	3/2	8,5	1480	1,8÷10	22	8	⊖1	0,330	CL-9371 CL-9371R
Serienmäßig mit Spule U1, ar Ideal für Vakuumbetrieb und f bei Niederdruck usw.). Redu: Die Typenbezeichnung	ür alle mit zierte Höh	der Umlaufspannung ne. Reihenmontage n		ängenden Isnahme d	Problem er Mode	e (Ein	gang über t Spule/H.	die Entlüft	ungen, Be	etrieb	_		ben 2 Positionen ? Positionen

Тур	An- schlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm	Durchfluß (NI/min)	Druck bar	Schaltze	eiten ms Aberr. (10)	Hand- betat.	Masse kg	Artikelnr.	
Einseitiger elektris	cher l	mpuls - Spule	in Linie	/ L	!	ļ	Į.							
	G 1/8	14 7 7 7 7 12		pneum.	F/0	6,5	890	2,5÷10	24	20	⊖ 1	0,240	CM-600R	
1	G 1/4	3,25.	elektr.	Feder	5/2	8,5	1480	2÷10	25	32	⊖ 1	0,300	CM-9600 CM-9600R	
. 13	G 1/8		verstärkt Spule in Linie			6,5	890	3÷10	21	25	⊖ 1	0,250	CM-602A	
D. C.	G 1/4	14 7 12 315 M 12		mechan. Feder	5/2	8,5	1480	2÷10	22	43	⊖ 1	0,310	CM-9602A	
Einseitiger elektris	cher Ir	npuls - Spule	um 90° v	l verdreh	it / H									
	G 1/8					6,5	890	2,5÷10	26	22	⊖ <u>1</u>	0,270	CM-605	
	G 1/4	14 7 12 12 3 1 5 1		pneum. Feder	5/2	8,5	1480	2÷10	28	34	Θ	0,330	CM-9605	
			elektr. verstärkt Spule um 90°			0,0	1100	2 10		0.	<u></u>	0,000	CM-9605R	
	G 1/8	14 HNT 11 12	verderht		mechan.	E/0	6,5	890	3÷10	23	27		0,280	CM-607R
	G 1/4	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		Feder	5/2	8,5	1480	2÷10	24	44	⊖ <u>1</u>	0,340	CM-9607A	
Einseitiger elektris	chor li	mpule - Spule	narallal	/ D										
Einseitiger elektris	G 1/8	iipuis - Spuie	paraller	/ F		6,5	890	2,5÷10	28	24	⊖ <u>1</u>	0,280	CM-609	
* =	G 1/4	14 7 12 3,15		pneum. Feder	5/2	8,5	1480	2÷10	30	35		0,340	CM-9609	
	G 1/8		elektr. verstärkt – Spule parallel			6,5	890	3÷10	25	29	<u>↑</u>	0,290	CM-611A	
		14 17 17 1 12 14 M 12		mechan. Feder	5/2	0,0	330	0.10	20	23	<u></u> ←	0,200	CM-611R	
Serienmäßig mit Spule U1, a	G 1/4	Spule U3.				8,5	1480	2÷10	27	45	Ĺ	0,350	CM-9611R	
Ideal für Vakuumbetrieb und f bei Niederdruck usw.). Redu Die Typenbezeichnung	ür alle mit zierte Höh	der Umlaufspannung ie. Reihenmontage m		ängenden Isnahme d	Probleme er Mode	e (Eing lle mit	gang über t Spule/H.	die Entlüf	tungen, B	Setrieb	_		Positionen	

Тур	An- schlüsse	Symbol	Steuer. (12)	Rücklauf (10)	Wege	Ø mm	Durchfluß (NI/min)	Druck bar	Schaltze	eiten ms Aberr. (10)	Hand- betät.	Masse kg	Artikelnr.
Einseitiger elektris	cher I	mpuls - Spule	in Linie	/ L	<u> </u>	<u> </u>	, ,		(/				
	G 1/8	14 1 1 1 1 12 12		elektr.	5/2	6,5	890	1,2÷10	20	20	⊖ <u>1</u>	0,280	CM-620 CM-620R
26	G 1/4			verstärkt	5/2	8,5	1480	1,5÷10	22	22	⊖ <u>1</u>	0,320	CM-9620 CM-9620R
	G 1/8	14 h c 1 1 12	elektr. verstärkt	elektr.	5/2	6,5	890	2÷10	20	23	⊖ <u>1</u>	0,280	CM-621 CM-621R
	G 1/4	\[\frac{1}{1} \sqrt{1} \sqrt{1} \\ \frac{1}{1} \sqrt{1} \\ \frac{1}{1} \\ \frac{1} \\ \frac{1} \\ \frac{1}{1} \\ \frac{1} \\ \frac	Spule in Linie	differential	3/2	8,5	1480	1,8÷10	22	25	⊖ <u>1</u>	0,320	CM-9621 CM-9621R
1/4	G 1/8	14 - 12 12 12		pneum.	F/0	6,5	890	1,2÷10	20	8	⊖ 1	0,240	CM-622 CM-622R
	G 1/4	315		Impuls verstärkt	5/2	8,5	1480	1,5÷10	22	10	⊖ <u>1</u>	0,290	CM-9622 CM-9622R
Einseitiger elektris	cher Ir	npuls - Spule	um 90° v	erdreh	t/H								
_ &_	G 1/8	14 <u>LNT 71 V 17</u> L 12		elektr.	5/2	6,5	890	1,2÷10	22	22	⊖ <u>1</u>	0,340	CM-625 CM-625R
5 9	G 1/4	\[\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \fr		verstärkt	0,1	8,5	1480	1,5÷10	23	23	⊝	0,380	CM-9625 CM-9625R
	G 1/8	14 per 14 h 12	elektr. verstärkt	elektr.	-12	6,5	890	2÷10	22	25	⊖ <u>1</u>	0,340	CM-626 CM-626R
2.5	G 1/4	□ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spule um 90° verderht	differential	5/2	8,5	1480	1,8÷10	23	26	⊝	0,390	CM-9626 CM-9626R
	G 1/8	2 4 12		pneum.		6,5	890	1,2÷10	22	8	Θ 1	0,340	CM-627 CM-627R
10	G 1/4	14 12 12 12 12 12 12 12 12 12 12 12 12 12		Impuls verstärkt	5/2	8,5	1480	1,5÷10	23	10	⊝	0,320	CM-9627 CM-9627R
Einseitiger elektris	cher II	npuls - Spule	parallel	/ P									
- 8	G 1/8	14 <u>- 17 7 17 12</u> 12		elektr.	5/2	6,5	890	1,2÷10	24	24	⊖ <u>1</u>	0,360	CM-629 CM-629R
	G 1/4	ZZ ↓ / T T 1 1 1 1 1 1 1 1		verstärkt	0,1	8,5	1480	1,5÷10	25	25	⊝ <u>^</u>	0,390	CM-9629 CM-9629R
-	G 1/8	14 2 4 12 12 12 12 12 12 12	elektr. verstärkt	elektr.	F 10	6,5	890	2÷10	24	27	⊖	0,360	CM-630 CM-630R
	G 1/4	7	Spule parallel	differential	5/2	8,5	1480	1,8÷10	25	28	⊝	0,400	CM-9630 CM-9630R
	G 1/8	. 24		pneum.		6,5	890	1,2÷10	24	8	⊝ <u>^</u>	0,280	CM-631 CM-631R
	G 1/4	315		Impuls verstärkt	5/2	8,5	1480	1,5÷10	25	10	⊝	0,330	CM-9631 CM-9631R
Serienmäßig mit Spule U1, a Ideal für Vakuumbetrieb und f bei Niederdruck usw.). Redu	ür alle mit	der Umlaufspannung	zusammenhä öglich mit Au	ängenden l Isnahme d	Problem er Mode	e (Eing	gang über Spule/H.	die Entlüf	tungen, B	etrieb	⊝ = ı		ben 2 Positionen ? Positionen
Die Typenbezeichnung	gen vers	stehen sich ohn	e Spulen										

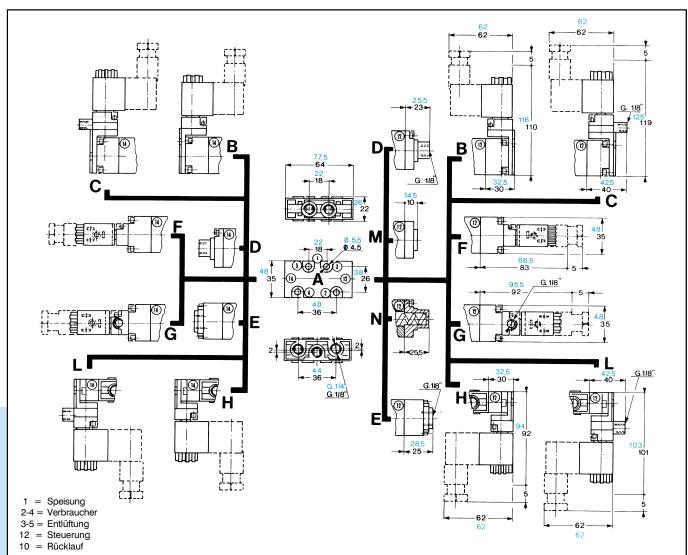
Тур	Symbol	(12)	Rücklauf (10)			Durchfluß (NI/min)	bar	Err. (12)	Aberr. (10)	betät.		Artikelnr.
Einseitiger elektrischer li	mpuls mit ext	erner Se	rvoste	uerun	g de	es Pilo	tventil	s - Sp	ule in	Linie	/ L	
	4 40		pneum.	5/2 G 1/8	6,5	890	2,5÷10	24	20	⊖ <u>1</u>	0,270	CM-640 CM-640R
and the same of th	3 1 5 12	elektr. verstärkt	Feder	5/2 G 1/4	8,5	1480	2÷10	25	32	⊖ <u>1</u>	0,330	CM-9640
	2 4	Spule in Linie		5/2 G 1/8	6,5	890	3÷10	21	25	Θ 1	0,280	CM-642A
	14 T T T T T T T T T T T T T T T T T T T		mechan. Feder	5/2 G 1/4	8,5	1480	2÷10	22	43	⊖ £	0,340	CM-9642A
Einseitiger elektrischer li	mpuls mit ext	erner Sei	rvostei	ierun	a de	s Pilot	ventils	S - Spi	ıle um	90° v	/erdre	ht / H
				5/2	6,5	890	2,5÷10		22	Θ	0,300	CM-645
	14 7 12		pneum. Feder	G 1/8						1 ⊝		CM-645R
		elektr. verstärkt Spule		G 1/4	8,5	1480	2÷10	27	34	1_	0,360	CM-9645R
	2 4	um 90° verdreht	mechan.	5/2 G 1/8	6,5	890	3÷10	23	27	⊖1	0,310	CM-647A
	14 m 12 m 12		Feder	5/2 G 1/4	8,5	1480	2÷10	24	44	⊖ <u>1</u>	0,370	CM-9647A
Einseitiger elektrischer li	mpuls mit ext	erner Se	ı rvostei	ıerun	g de	s Pilot	ventil	s - Spi	ule pai	rallel	/ P	
				5/2 G 1/8	6,5	890	2,5÷10	28	24	Θ	0,310	
-6_	14 3 11 5 12		pneum. Feder	5/2	Q F	1400	2:40	30	35	1 ⊝	0.270	CM-9649
		elektr. verstärkt Spule		G 1/4	8,5	1480	2÷10	30	35	Ĺ	- 0,370	CM-9649R
	2 4	parallel		5/2 G 1/8	6,5	890	3÷10	25	29		0,320	CM-651A
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mechan. Feder	5/2	8,5	1480	2÷10	26	45		0,380	CM-9651A
Serienmäßig mit Spule U1, auf Anfrage Ideal für Vakuumbetrieb und für alle mit bei Niederdruck usw.). Reduzierte Höh	Spule U3. der Umlaufspannung ee. Reihenmontage n	zusammenha nöglich mit Au	ängenden Isnahme d	G 1/4 Probleme	e (Eing	gang über Spule/H.	die Entlüft	ungen, B	Betrieb	_		CM-9651R uben 2 Positionen 2 Positionen

Тур	Symbol	(12)	Rücklauf (10)		mm	Durchfluß (NI/min)	bar	Err. (12)	Aberr. (10)	betät.		Artikelnr.
Beidseitiger elektrischer	Impuls mit ex	cterner S	ervost	eueru	ng (des Pil	otvent	ils - S	pule ir	Lini	e/L	
	14 2 4 1 2 12		elektr.	5/2 G 1/8	6,5	890	1,2÷10	20	20	⊖ Ĺ	0,340	CM-660 CM-660R
1	315		verstärkt	5/2 G 1/4	8,5	1480	1,5÷10	22	22	Θ	0,380	CM-9660
11		elektr.		5/2	6,5	890	2÷10	20	23	<u>↑</u>	0,340	CM-661
-	14 7 7 12	verstärkt Spule in Linie	elektr. differential	G 1/8	8,5	1480	1,8÷10	22	25	Ĺ ⊝	0,380	CM-9661
10				G 1/4 5/2						Ĺ ⊝		CM-9661I
1011	14 12 4 12 4 - 1		pneum. Impuls	G 1/8	6,5	890	1,2÷10	20	8	Ĺ	0,300	CM-662R
W.A.	315		verstärkt	G 1/4	8,5	1480	1,5÷10		10	⊖ 1∟	0,350	CM-9662I
Beidseitiger elektrischer	Impuls mit ex	terner S	ervoste	eueru	ng c	des Pilo	otventi	ls - S _l	pule ur	m 90°	verd	reht / H
	14 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		elektr.	5/2 G 1/8	6,5	890	1,2÷10	22	22	⊖ î	0,400	CM-665 CM-665R
	315		verstärkt	5/2 G 1/4	8,5	1480	1,5÷10	23	23	⊝ £	0,440	CM-9665
The same	14 - 24 12	elektr. verstärkt	elektr.	5/2 G 1/8	6,5	890	2÷10	22	25	⊖ <u>1</u>	0,400	CM-666
	315	Spule um 90° verdrent	differential	5/2 G 1/4	8,5	1480	1,8÷10	23	26	⊝	0,440	CM-9666
3	14 2 4 12		pneum.	5/2 G 1/8	6,5	890	1,2÷10	22	8	Θ	0,330	CM-667
	315		Impuls verstärkt	5/2	8,5	1480	1,5÷10	23	10	<u>↑</u>	0,380	CM-9667
Paidacitinas alaktriaahar	Impula Cou	le nevell	ol / D	G 1/4						Ĺ		CM-9667
Beidseitiger elektrischer	14 htt 12 12 12	ie paraii	elektr.	5/2 G 1/8	6,5	890	1,2÷10	24	24	⊝	0,410	CM-669
	315		verstärkt	5/2 G 1/4	8,5	1480	1,5÷10	25	25	⊝ £	0,450	CM-9669
	2 4	elektr.		5/2 G 1/8	6,5	890	2÷10	24	27	Θ 1	0,410	CM-670
	315	verstärkt Spule parallel	elektr. differential		8,5	1480	1,8÷10	25	28	Θ	0,450	CM-9670
3-	14 _ 2 4		nnou	5/2	6,5	890	1,2÷10	24	8	<u></u>	0,340	CM-671
=	315		pneum. Impuls verstärkt	3/2	8,5	1480	1,5÷10	25	10	Δ Θ	0,390	CM-671F
Serienmäßig mit Spule U1, auf Anfrage Ideal für Vakuumbetrieb und für alle mit bei Niederdruck usw.). Reduzierte Höh	der Umlaufspannung	zusammenh	ängenden	G 1/4	e (Ein	gang über	die Entlüf	tungen, E	Betrieb	_		CM-9671 pen 2 Positionen 2 Positionen
Die Typenbezeichnungen vers			.S.I.G.IIII U	o, wiode		. opuic/11.						



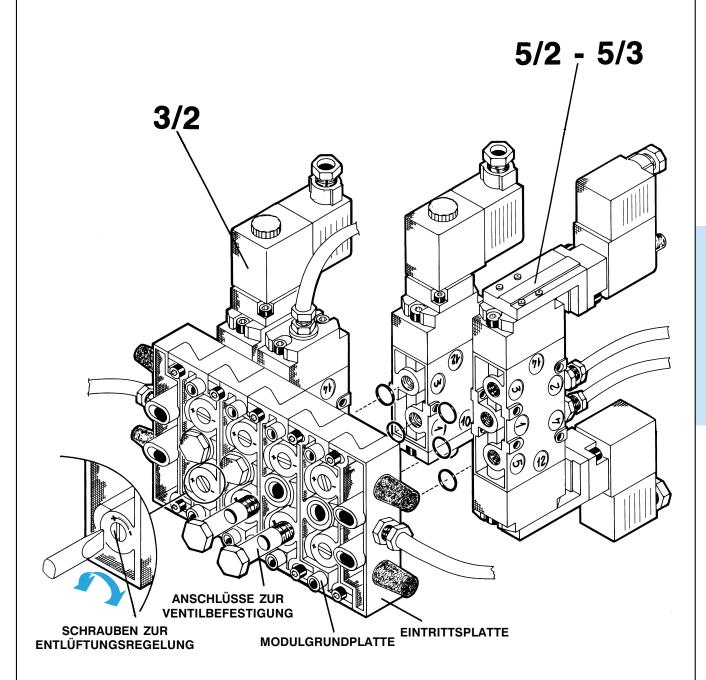
Тур	Symbol	Steuer. Rücklauf (12) (10)	Wege		Durchfluß (NI/min)			zeiten ms Aberr. (10)	hatät	Masse kg	Artikelnr.
5/3 Geschlossene, of	fene Mittelstell	ung und Mittels	tellung	j un	ter Dru	ıck - S	pule i	in Linie	e / L		
	14 M + 1 1 1 1 M 12		G 1/8	6,5	890	2,5÷10	18	24	⊝	0,210	CM-680 CM-680R
		geschlossene Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	20	35	Θ	0,300	CM-9680
									<u>1</u> ⊝		CM-9680R CM-685
	14 M 12	Offene Mittelstell.	G 1/8	6,5	890	2,5÷10	18	24	Ĺ	0,210	CM-685R
		elekti. IITIpula	G 1/4	8,5	1480	2,8÷10	20	35	⊖1	0,300	CM-9685 CM-9685R
	2.4		G 1/8	6,5	890	2,5÷10	18	24	⊖ 1_	0,210	CM-690 CM-690R
	14 M 7 7 7 1 M 12	Mittelstellung unter Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	20	35	Θ	0,300	CM-9690
5/3 Geschlossene, of	fene Mittelstell	ung und Mittels	tellund	า เมท	ter Dru	ıck - Sı	oule i	ım 90°	 verd	reht / F	CM-9690R
	2 4	<u>3</u>	G 1/8	6,5	890	2,5÷10	20	25	9 1	0,350	CM-700
	14 M	geschlossene Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	22	37	⊖ 1	0,410	CM-9700 CM-9700R
	14 ANT 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		G 1/8	6,5	890	2,5÷10	20	25	⊖ 1	0,350	CM-705
	14 M 12 M 12	Offene Mittelstell. elektr. Impuls	G 1/4	8,5	1480	2,8÷10	22	37	Θ 1	0,410	CM-9705
	2 4		G 1/8	6,5	890	2,5÷10	20	26	⊖ <u>1</u>	0,350	CM-710 CM-710R
	14 M 12	Mittelstellung unter Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	22	37	Θ 1	0,410	CM-9710
5/3 Geschlossene, of	l ffene Mittelstell	ung und Mittels	tellun	un c	ter Dru	uck - S	pule i	paralle			om or rore
5,0 5,0 5,0	14 MT 411 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		G 1/8	6,5	890	2,5÷10	22	28	⊖ <u>1</u>	0,370	CM-730
		geschlossene Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	24	39	⊖ <u>1</u>	0,420	CM-9730 CM-9730R
	14 M 7 7 1 1 1 M 12	0"	G 1/8	6,5	890	2,5÷10	22	28	_ ⊝ 1_	0,370	CM-735
		Offene Mittelstell. elektr. Impuls	G 1/4	8,5	1480	2,8÷10	24	39	⊖ î_	0,420	CM-9735
	14 MIT 2 4	Musis V	G 1/8	6,5	890	2,5÷10	22	28	⊖ <u>1</u>	0,370	CM-740 CM-740R
	14 M 12	Mittelstellung unter Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	24	39	⊖ î_	0,420	CM-9740 CM-9740R
Serienmäßig mit Spule U1, auf A Ideal für Vakuumbetrieb und für a bei Niederdruck usw.). Reduzier	lle mit der Umlaufspann	ung zusammenhängend ge möglich mit Ausnahm	en Proble le der Mod	me (Ei delle n	ingang üb nit Spule/h	er die Entli 1.	üftungen	ı, Betrieb	<u></u>	 -mit Schraul -mit Hebel 2	l oen 2 Positonen
Die Typenbezeichnungen	verstehen sich c	hne Spulen									

Тур	Symbol	Funktion	Wege	Ø mm	Durchfluß (NI/min)	Druck bar		eiten ms Aberr. (10)	II Iaiiu-	Masse kg	Artikelnr.
5/3 Geschlossene, offene M	Mittelstellung und M	ittelstellung unter D	ruck mit	exte	erner Sei	rvosteue	rung d	es Pilotv	entils	- Spule	in Linie / L
	2 4 12 12 12 12 12 12 12 12 12 12 12 12 12	geschlossene	G 1/8	6,5	890	2,5÷10	18	24	⊖ <u>1</u>	0,360	CM-780
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	20	35	Θ	0,410	CM-9780
1100									Ĺ ⊝		CM-9780R CM-785
	14 M 12 M 12	Offene Mittelstell.	G 1/8	6,5	890	2,5÷10	18	24	Ĺ	0,360	CM-785R
	6 315 6	elektr. Impuls	G 1/4	8,5	1480	2,8÷10	20	35	⊖1	0,410	CM-9785 CM-9785R
	2 4		G 1/8	6,5	890	2,5÷10	18	24		0,360	CM-790 CM-790R
	14 M 12 3 15 3 15	Mittelstellung unter Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	20	35	<u>↑</u>	0,410	CM-9790
									Ĺ		CM-9790R
5/3 Geschlossene, offene Mi	ittelstellung und Mitte	elstellung unter Druck	mit exte	erner	Servoste	uerung	des Pilo	tventils -	Spule	um 90° 1	verdreht / H
	14 ANT 2 4 10 10 12		G 1/8	6,5	890	2,5÷10	20	26	⊖ <u>1</u>	0,420	CM-800 CM-800R
105	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	geschlossene Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	22	37	⊖ <u>1</u>	0,440	CM-9800 CM-9800R
			G 1/8	6,5	890	2,5÷10	20	26	Θ	0,420	CM-805
	14 M 12	Offene Mittelstell. elektr. Impuls	0.4/4	0.5	4400	2.0.40	22	27	1 ⊖	0.440	CM-805R CM-9805
T. Marie			G 1/4	8,5	1480	2,8÷10	22	37	1_	0,440	CM-9805R
SNA.	14 M 24 M 12	Mittelstellung unter	G 1/8	6,5	890	2,5÷10	10	26	⊖ 1_	0,420	CM-810 CM-810R
		Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	22	37	⊖ 1_	0,440	CM-9810 CM-9810R
5/3 Geschlossene, offene u	l und Mittelstellung u	nter Druck mit exter	ner Ser	oste/	uerung	des Pilo	tventils	- Spule		el / P	
	2 4		G 1/8	6,5	890	2,5÷10	22	28	⊖ <u>1</u>	0,440	CM-830 CM-830R
	14 M 12 11 M 12	geschlossene Mittelstellung elektr. Impuls	G 1/4	8,5	1480	2,8÷10	24	39	Θ	0,460	CM-9830
			G 1/8	6,5	890	2,5÷10	22	28	<u>↑</u>	0,440	CM-9830R CM-835
	14 M 12 14 M 12	Offene Mittelstell. elektr. Impuls	G 1/0	υ,υ	090	∠,J÷ 10	22	20	î_ ⊝	0,440	CM-835R
=			G 1/4	8,5	1480	2,8÷10	24	39	Ĺ	0,460	CM-9835R
	14 M 7 12 12	Mittaetallunguntar	G 1/8	6,5	890	2,5÷10	22	28	⊖1	0,440	CM-840 CM-840R
		Mittestellung unter Druck elektr. Impuls	G 1/4	8,5	1480	2,8÷10	24	39	⊖ 1_	0,460	CM-9840
Serienmäßig mit Spule U1, auf A Ideal für Vakuumbetrieb und für a	alle mit der Umlaufspann	ung zusammenhängend	en Probler	ne (Ei	ngang übe	er die Entl	üftungen	, Betrieb	Θ=	mit Schraut	CM-9840R Den 2 Positionen Positionen
bei Niederdruck usw.). Reduzier	te i ione. nememmontaç	ge mognon mit Ausnann	e uei IVIO				nunge	n verste	ehen s	sich oh	ne Spulen



Aufgrund der Artikelnummer und der unten angeführten Kombination ergeben sich die in der Zeichnung angegebenen Einbaumaße

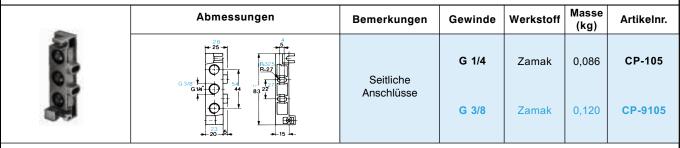
Artikel	nummer	Kombin		Artikel	nummer	Kombina	
G 1/8	G 1/4	Steuerung (12)	Rücklauf (10)	G 1/8	G 1/4	Steuerung (12)	Rücklauf (10)
CL-200	CL-9200	E - A	- M	CL-322	CL-9322	F - A	- E
CL-200A	CL-9200A	E - A	\ - N	CL-325	CL-9325	H - A	- H
CL-203	CL-9203	E - A	- M	CL-326	CL-9326	H - A	- H
CL-220	CL-9220	E - A	\ - E	CL-327	CL-9327	H - A	- E
CL-221	CL-9221	E - A	۸ - D	CL-340	CL-9340	G - A	- M
CL-224	CL-9224	D - A	۱ - D	CL-341	CL-9341	G - A	- M
CL-300	CL-9300	F - A	- M	CL-342A	CL-9342A	G - A	- N
CL-301	CL-9301	F - A	- M	CL-345	CL-9345	L-A	- M
CL-302A	CL-9302A	F - A	N	CL-346	CL-9346	L - A	- M
CL-303A	CL-9303A	F - A	N	CL-347A	CL-9347A	L - A	- N
CL-305	CL-9305	H - A	- M	CL-360	CL-9360	G - A	- G
CL-306	CL-9306	H - A	M	CL-361	CL-9361	G - A	- G
CL-307A	CL-9307A	H - A	\ - N	CL-362	CL-9362	G - A	- E
CL-308A	CL-9308A	H - A	\ - N	CL-365	CL9365	L - A	- L
CL-320	CL-9320	F - A	\ - F	CL-366	CL-9366	L - A	- L
CL-321	CL-9321	F - A	\ - F	CL-367	CL-9367	L - A	- E
Die Artikelnumn	nern der Magnetve	ntile verstehen	sich ohne Sp	ulen			


Aufgrund der Artikelnummer und der unten angeführten Kombination ergeben sich die in der Zeichnung angegebenen Einbaumaße

Artikelr	nummer	Kombin		Artikelı	nummer	Kombin	
G 1/8	G 1/4	Steuerung (12)	Rücklauf (10)			Steuerung (12)	Rücklau (10)
CM-500	CM-9500	E - A	M	CM-645	CM-9645	L - A	- M
CM-500A	CM-9500A	E - A	\ - N	CM-647A	CM-9647A	L - A	N
CM-520	CM-9520	E - A	\ - E	CM-660	CM-9660	G - A	\ - G
CM-521	CM-9521	E - A	\ - D	CM-661	CM-9661	G - A	\ - G
CM-524	CM-9524	D - A	\ - D	CM-662	CM-9662	G - A	E
CM-580	CM-9580	E - A	\ - Е	CM-665	CM-9665	L - A	۱ - L
CM-585	CM9585	E - A	\ - E	CM-666	CM-9666	L - A	۱ - L
CM-590	CM-9590	E - A	\ - E	CM-667	CM-9667	L - A	\ - Е
CM-600	CM-9600	F - A	M	CM-680	CM-9680	F - A	\ - F
CM-602A	CM-9602A	F - A	\ - N	CM-685	CM-9685	F - A	\ - F
CM-605	CM-9605	F - A	- M	CM-690	CM-9690	F - A	\ - F
CM-607A	CM-9607A	F - A	\ - N	CM-700	CM-9700	H - A	۱ - H
CM-620	CM-9620	F - A	\ - F	CM-705	CM-9705	H - A	۱ - H
CM-621	CM-9621	F - A	\ - F	CM-710	CM-9710	H - A	۱ - H
CM-622	CM-9622	F - A	\ - D	CM-780	CM-9780	G - A	\ - G
CM-625	CM-9625	H - A	\ - H	CM-785	CM-9785	G - A	\ - G
CM-626	CM-9626	H - A	\ - H	CM-790	CM-9790	G - A	\ - G
CM-627	CM-9627	H - A	\ - D	CM-800	CM-9800	L - A	\ - L
CM-640	CM-9640	G - A	\ - M	CM-805	CM-9805	L - A	\ - L
CM-642A	CM-9642A	G - A	A - N	CM-810	CM-9810	L - A	\ - L

MONTAGEPLAN

Patentierte Grundplatte mit besonderen Merkmalen in Bezug auf Zweckmäßigkeit und Funktionsweise. Sie kann ohne Zusatzelemente mit den serienmäßig dazu gelieferten Schrauben schnell und in perfekter Ausrichtung zu einer Batterieeinheit montiert werden. Die Grundplatte wird komplett mit Schrauben zur Entlüftungsregulierung angeliefert und kann ohne weiteres 3/2 - 5/2 - 5/3 Wege Ventile in einer einzigen Batterie aufnehmen.



Grundplatte CLIPS für Ventile Serie UNIVERSAL 2/2 - 3/2 - 5/2 - 5/3

Тур	Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse (kg)	Artikelnr.
1	25 -	Zusammengeführte	G 1/8	Zamak	0,136	CP-100
	83 22 18	und geregelte Entlüftung	G 1/4	Zamak	0,210	CP-9100

Schrauben, Dichtungen, Regelschrauben und Verbindungsschrauben zur Ventilbefestigung werden serienmäßig mitgeliefert

Eintrittsplatte für das System CLIPS

Schrauben und Dichtungen werden serienmäßig mitgeliefert

Maximale Abmessungen

27 102 15 102 15 102 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 103 15 104 15 105

Vorteile

Die Serie CLIPS wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.

- . Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden
- Die Anzahl der Ventile kann beliebig erweitert oder vermindert werden
- Schneller Zusammenbau mittels serienmäßig integrierter Schraube
- Reduzierte Lagerhaltung
- Einfache technische Handhabung.
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Batterie beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung), indem die Anzahl der Elemente beliebig erweitert oder vermindert werden kann
- Es können in derselben Batterie beliebig Ventile 3/2 5/2 5/3 verwendet werden

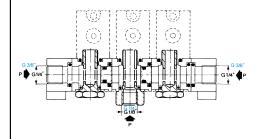
Für den Zusammenbau legen Sie die Grundplatten flach auf und ziehen die entsprechende Schraube fest an, sodaß eine perfekte Batteriemontage erreicht wird

Zubehör

Anschlußschraube und Verschlußstopfen für Differentialdrücke

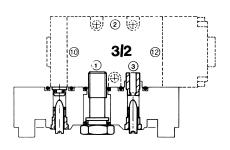
Max. Abmessungen	Anschlüsse	Werkstoff	Masse (kg)	Artikelnr.
G 1/a" SW 20 G.1/8" SW 16	G 1/8 G 1/4	Messing	0,028	CP-110 CP-9110
		Aluminium	0,013	CP-111 CP-9111

Für jeden zusätzlichen Druck müssen eine Anschlußschraube und zwei Verschlußstopfen bestellt werden


Verschlußstopfen zur Montage eines Ventils 3/2 Regelschraube

Max. Abmessungen	Anschlüsse	Werkstoff	Masse (kg)	Artikelnr.
		Aluminium	0,010	CP-112 CP-9112
		Messing	0,006	CP-113 CP-9113

Bei der Montage eines Ventils 3/2 NC oder NO den Verschlußstopfen in den offenen Anschluß der CLIPS Grundplatte stecken. Die Grundplatte wird serienmäßig mit Regelschraube mit Schraubenzieherschlitz geliefert, auf Anfrage Regelschraube mit Rändelung


Montagebeispiel

Montagebeispiel für Batteriemontage mit 3 Drücken

Wenn die Entlüftung nicht geregelt werden soll, den Plastikeinsatz entfernen und die Regelschraube eingeschraubt lassen

Montagebeispiel Ventil 3/2 NC oder NO

UNIVER hat entsprechend den letzten Anforderungen des Marktes eine neue Ventilreihe für ISO-Grundplatten in die Produktion aufgenommen. Die einzelnen Größen sind gleich in Aussehen und Abmessungen, sie sind jedoch mit zwei verschiedenen internen Umschaltsystemen gebaut, um den verschiedenen Anforderungen zu entsprechen, die aus der Steuerung der pneumatischen Energie entstehen können. Diese zwei Systeme weisen die Haupteigenschaften aller UNIVER-Produkte auf (großer Durchfluß, kurzer Innenhub, Einsatz ohne Öl) und können dank ihrer vielseitigen Einsatzmöglichkeiten fast allen Benutzeranforderungen gerecht werden. Die nach diesem Prinzip hergestellten Ventile können auch unter ungünstigen Bedingungen Millionen von Betätigungen sicher und zuverlässig ausführen.

TECHNISCHE DATEN

5599/1

Zwei verschiedene innere Umschaltsysteme:

Mischsystem, Schiebersystem.

Montage auf ISO-Grundplatten der Größen 1/2/3/4 Gehäuse: Acetalharz (innen), Aluminiumdruckguß (außen)

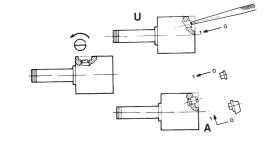
Umgebungstemperatur: -10°C \div 50°C Mediumstemperatur: max +50°C Medium: gefilterte Luft 50 μ m, getrocknet

oder nicht für Mischsystem;

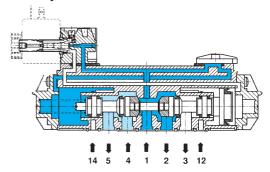
nicht getrocknet für Schiebersystem Dichtungen: Nitrilgummi und Vulkollan Steuerung: indirekt elektropneumatisch und

pneumatisch

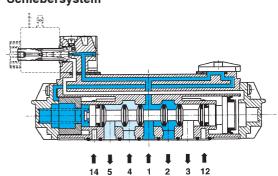
Rücklauf: mit pneumo-mechanischer Feder Spulen U3 Serie DC-... (U1 Serie DA-... auf Anfrage) Siehe Abschnitt Zubehör.

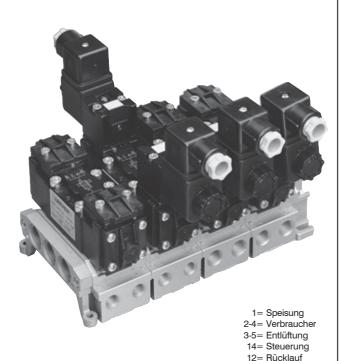

ANMERKUNG: Es ist möglich, eine annähernde Schätzung des Faktors "CV" durchzuführen, indem man die in NI/min angegebenen Durchflußwerte durch "962"

dividiert.


Manuelles Eingreifen am elecktrischen Teil

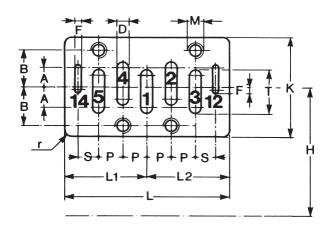
Die manuelle Steuerung des Pilotventils wird serienmäßig für den Typ mit zwei stabilen Positionen, nicht überstehend und mittels Schraubenzieher zu betätigen, geliefert.


Bei Anwendung zur Unfallverhütung, zur Vermeidung eines ungewollten Startens von Maschinen (Anfragen dieser Art kommen überwiegend aus dem Automobilsektor) ist eine manuelle Steuerung mittels versenktem Druckknopf, der nur durch einen Pfriem betätigt werden kann, erhältlich. Der letzte Buchstabe in der Artikelnummer für diese Art von Pilotventil lautet U.



Mischsystem

Schiebersystem

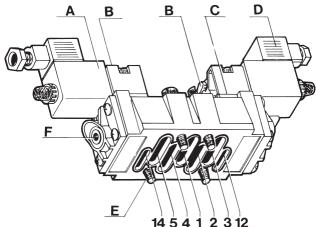


ISO 5599/1

Die ISO-Normen sind mittlerweile seitens aller Maschinenhersteller sowie seitens der wichtigsten Hersteller von Pneumatikkomponenten anerkannt und gehören zur modernen Realität. Die Wahl von Ventilen nach ISO-Norm ist heutzutage gleichbedeutend mit technischem Fortschritt und Garantie für den Benutzer, da Ventilgehäuse und elektromagnetische Teile untereinander ausgetauscht werden können.

Größe	Α	В	D	F	М	т	s	Р	н	r max	K min	L1 min	L2 min	L min
1	9	14	4,5	2	M5	16,5	8,5	9	43	2,5	38	32	2,5	65
2	10	19	7	3	M6	22	10	12	56	3	50	40),5	81
3	11,5	24	10	4	M8	29	13	16	71	4	64	5	3	106
4	14,5	29	13	4	IVIO	36,5	15,5	20	82	4	74	77,5	64,5	142

Die ISO-Norm 5599/1 bestimmt alle Abmessungen der Grundflächen der Ventile und den Mindestabstand zwischen zwei nebeneinander montierten Grundplatten.

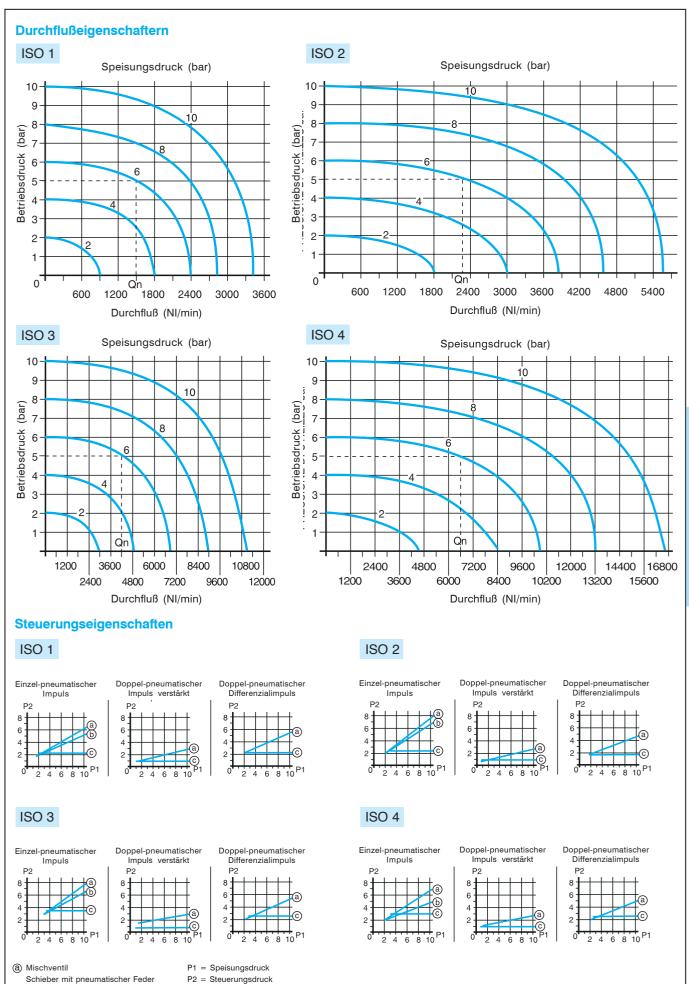

Sie gewährleistet bei der Batteriemontage die Austauschbarkeit jedes beliebigen Ventils, das der Norm entspricht. Weiters ist die Numerierung der Anschlußöffnungen eindeutig festgelegt:

1 = SPEISUNG 2-4 = VERBRAUCHER 3-5 = ENTLÜFTUG

14 = VORZUGSSTEUERUNG 12 = RÜCKLAUF

Anschlüsse 14 und 12 werden für Steuerungssignale benutzt

(z.B.: bei einem einzelnen Elektroimpuls wird die Spule auf 14 montiert, bei einem einzelnen pneumatischen Impuls erfolgt die Steuerung über 14)



Im Rahmen der ISO-Norm 5599/1 nachstehend einige Empfehlungen:

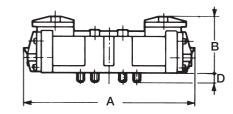
- Pilotventil und Spule (A) sind auf dem Ventilgehäuse parallel zum Ventil montiert, um eine manuelle Betätigung auf dem Ventilgehäuse (F) zu erleichtern
- Manuelle Betätigung am Pilotventil (B)
- Die Grundfläche des Pilotventils (C) entspricht der CNOMO-Norm, die seit Jahren auf dem europäischen Markt angewandt wird. Bei Ausfall der (nicht genormten) Spule kann diese zusammen mit dem Pilotventil ausgetauscht werden, indem nur der Elektrostecker umgesteckt wird
- Genormter Elektrostecker (D)
- Der wesentliche Vorteil der ISO-Ventile besteht darin, daß im Störungsfalle das komplette Ventil nach Entfernen der Befestigungsschrauben (E) innerhalb kürzester Zeit ausgetauscht werden kann, ohne eine Pneumatik-Verbindung zu lösen.

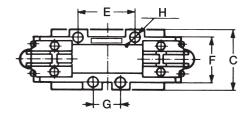
Schieber mit mechanischer Feder

Private Privat	Тур	Symbol	Steuer. (14)	Rücklauf (12)	Wege	Ø mm	Druck (bar)	Durchfluß NI/min.			eiten ms Aberr. (12)	Masse kg*	Artikelnr.			
Preserve						0	2÷10	1400	l .			0,30	BE-3100			
Preum Preu						0	1,8÷10			11	22	0,30	BE-3800			
Prount P						10	2,3÷10	2300	2 N	11	14	0,40	BE-4100			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14 12 12	Pneum		5/2	10	2÷10	2500		13	19	0,40	BE-4800			
Preum Preu		5/3	i neum.	mechan.	5/2	15	2,5÷10	4200	₃ N	19	49	0,65	BE-5100			
Present Pres							2,2÷10			21	52	0,65	BE-5800			
Preum Preu						19	3÷10	6600	4 N	23	46	0,87	BE-6100			
8							2,8÷10			24	29	0,87	BE-6800			
Prisum P						8	1÷10	1480		5	5	0,30	BE-3150			
Preum							0,8÷10		S	6	6	0,30	BE-3850			
Preum						10		2300	2 _		6	0,40	BE-4150			
10		14 2 12 12 12 12 12 12 12 12 12 12 12 12 1	Pneum.	Pneum.	5/2		1÷10				7	0,40				
19		513				15			3 –			0,65				
Phelium Phe	- 100															
Preum						19			4 –			ŕ				
Pheum.							1÷10		S	14	14	0,87	BE-6850			
Pheum Hermin Pheu						8	2÷10	1480		5	16	0,30	BE-3170			
Pneum Pne		14														
Pheum officients 5/2 15 15 15 15 15 15 15 1								2300	2 -			,				
15			Pneum.			5/2							,			
1				difformati		15		4200	3 –							
19																
Below Bel						19			4 –							
8																
Helektr. Pneumo mechan 5/2 10 2300 2 10 24 25 0,55 BE-4000 ◆ 10 2300 2 10 2300 2 10 24 25 0,55 BE-4000 ◆ 10 2,3÷10 2300 2 10 24 30 0,55 BE-4700 ◆ 10 2,2÷10 4200 3 10 3 3 3 3 4 0,90 BE-5000 ◆ 10 2,8÷10 6600 4 10 10 10 10 10 2,8÷10 10 1480 1 10 10 10 10 10 10						8		1480	1 _							
Elektr. Pneumomechan. 5/2 10 1÷10 2300 2 S 24 30 0,55 BE-4700 ◆																
Elektr. Figure 1.5 2,5÷10 2,5÷10 2,2×10 2,2×10		4 2				10		2300	2 _			,				
15		14	Elektr.		5/2											
$19 = \frac{3 \div 10}{2,8 \div 10} = 6600 = \frac{4}{8} = \frac{M}{38} = \frac{62}{39} = \frac{1,12}{8} = \frac$		513				15		4200	3 _							
19 2,8÷10 6600 4 S 39 68 1,12 BE-6700 ◆ 2,8÷10 1480 1 S 17 17 0,55 BE-3020 ◆ 10 11÷10 2300 2 N 17 17 0,80 BE-4020 ◆ 11÷10 2300 2 N 17 17 0,80 BE-4020 ◆ 11÷10 2300 3 N 23 23 1,20 BE-5020 ◆ 11÷10 0,8÷10 0 N 25 25 1,37 BE-6020 ◆	1												·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						19			4 –							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
Elektr. Elektr. Elektr. by 10 1 ± 10 2300 2 M 17 17 0,80 BE-4020 ◆ 1 ± 10 2300 2 M 17 17 0,80 BE-4020 ◆ 1 ± 10 1 ± 10 0 0,80 DE-4720 ◆ 1 ± 10 0 0,8±10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						8			1 –							
Elektr. Elektr. 5/2 10 1÷10 2300 2 S 18 18 0,80 BE-4720 ◆ 1÷10 1÷10 3 M 23 23 1,20 BE-5020 ◆ 1,3÷10 19 1,3÷10 6600 4 M 25 25 1,37 BE-6020 ◆	4 - 2						·						•			
Elektr. 5/2						10		2300	2 –				· .			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 2 12	Elektr.	Elektr.	5/2		1÷10		S	18	18					
1,3÷10 19 6600 4 M 25 25 1,37 BE-6020 ◆		513			. 5/2	. 5/2	. 3/2	312	15	1÷10	4200	3 -		23	1,20	BE-5020 ◆
19 6600 4											0,8÷10			26	26	1,20
								10	1,3÷10			25	25	1,37	BE-6020 ♦	
						19	1÷10	0000		27	27	1,37	BE-6720 ◆			

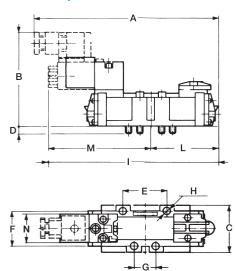
^{*} System: M = Mischsystem S = Schiebersystem

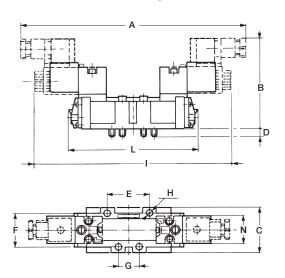
[♦]Für Handbetätigung mit versenkter Taste Variante "U"


		1	ı						-								
Тур	Symbol	Steuer. (14)	Rücklauf (12)	Wege	Ø mm	Druck (bar)	Durchfluß NI/min.	Größe System*		eiten ms Aberr. (12)	Masse kg*	Artikelnr.					
					8	2÷10	1480	1 M	16	34	0,55	BE-3030					
					0	1,8÷10	1460	S	17	28	0,55	BE-3730					
- 廊					10	1,8÷10	2300	2 <u>M</u>	17	29	0,80	BE-4030					
	4 2 M 12	Elektr.	ektr. Elektr.	5/2	10	1,8÷10	2300	2 <u> </u>	18	25	0,80	BE-4730					
1	513	Liona	differential	0,2	15	2,2÷10	4200	3 M	23	54	1,20	BE-5030					
VI III					10	2,5÷10	4200	S	26	46	1,20	BE-5730					
					19	2÷10	6600	4 —	25	45	1,37	BE-6030					
						2,7÷10		S	27	42	1,37	BE-6730					
					8	1÷10	1480	1 M	16	6	0,45	BE-3060 ♦					
						0,8÷10		S	17	8	0,45	BE-3760 ♦					
	4 2				10	1÷10	2300	2 <u>M</u>	17	7	0,80	BE-4060 ♦					
	14 12 12 12	Elektr.	Pneum.	5/2		1÷10		S	18	9	0,80	BE-4760 ♦					
	513				15	1÷10	4200	3 <u>M</u>	23	15	1,30	BE-5060 ♦					
						0,8÷10		S	26	17	1,30	BE-5760 ♦					
					19	1,3÷10	6600	4 <u>M</u>	25	16	1,37	BE-6060 ♦					
						1÷10		S	27	18	1,37	BE-6760 ♦					
					8	2÷10	1480	1 M	50	26	0,55	BE-3200 ◆					
						2,3÷10		S	17	25	0,55	BE-3900 ♦					
	4.2	Ele			10	2,3÷10	2300	2 M	54	24	0,80	BE-4200 ♦					
	14 W 12	Imp		5/3		2,5÷10		S	18	27	0,80	BE-4900 ♦					
	51 3	Offene Mittelstellung					I			15	2,5÷10	4200	з <u>М</u>	108	36	1,20	BE-5200 ♦
ALL STATES													2,5÷10		S	26	50
					19	3÷10	6600	4 <u>M</u>	115	115	1,37	BE-6200 ♦					
						2,5÷10		S	30	47	1,37	BE-6900 ◆					
					8	2÷10	1480	1 M	50	26	0,50	BE-3205 ♦					
	14 M F 1 2	Imp		5/3	10	2,3÷10	2300	2 M	54	24	0,80	BE-4205 ♦					
	513	Mittels unter	tellung Druck		15	2,5÷10	4200	3 M	108	36	1,20	BE-5205 ♦					
					19	3÷10	6600	4 M	115	115	1,37	BE-6205 ♦					
					8	2,3÷10	1480	1 S	17	25	0,50	BE-3940 ♦					
			ektr. ouls	5/3	10	2,5÷10	2300	2 S	18	27	0,80	BE-4940 ♦					
	*13		nlossene stellung		15	2,5÷10	4200	3 S	26	50	1,20	BE-5940 ♦					
					19	2,5÷10	6600	4 S	30	47	1,37	BE-6940 ♦					
* System: M = Misc		S = Sc		syste	m												


Die Artikelnummern der Magnetventile verstehen sich ohne Spulen

♦Für Handbetätigung mit versenkter Taste Variante "U"

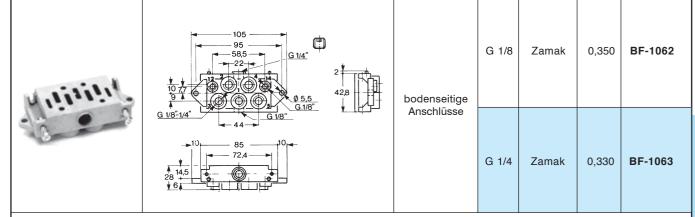

Einzel-Doppelpneumatischer Impuls, Misch-Schiebersystem Ventil 5/3 Mittelstellung geschlossen - offen, Schiebersystem pneumatischer Impuls.


	ISO 1	ISO 2	ISO 3	ISO 4
Α	128	145	191	222
В	47	47	63	63
С	39	52	64	74
D	5	5	10	10
Е	36	48	64	80
F	30	38	48	58
G	18	24	32	40
Н	M5 x 35	M6 x 35	M8 x 50	M8 x 50

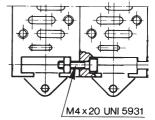
Einzel-Elektroimpuls

	ISO 1	ISO 2	ISO 3	ISO 4
Α	169,5	195,5	219	253
В	105	105	118	118
С	39	52	64	74
D	5	5	10	10
Е	36	48	64	80
F	30	38	48	58
G	18	24	32	40
Н	M5 x 35	M6 x 35	M8 x 50	M8 x 50
T	159,5	176	208,5	235
L	64	72,5	95,5	111
М	95,5	103,5	113	124
N	30	30	30	30

Doppel-Elektroimpuls Misch-Schiebersystem Elektroventil 5/3 Mittelstellung offen - geschlossen, Schiebersystem Elektroventil 5/3 Mittelstellung offen - unter Druck, Mischsystem


	ISO 1	ISO 2	ISO 3	ISO 4
Α	211	226	247	268
В	105	105	118	118
С	39	52	64	74
D	5	5	10	10
Е	36	48	64	80
F	30	38	48	58
G	18	24	32	40
Н	M5 x 35	M6 x 35	M8 x 50	M8 x 50
-1	191	207	226	248
L	128	145	191	222
N	30	30	30	30

ANMERKUNG: Werte mit U3-Spulen



Тур	Maximale Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse kg	Artikel- nummer
Einzelgrundplatte mit	t seitlichen Anschlüssen					
Tillin.	87.5 7.5 -4.4 	Anschlüsse	G 1/8	Zamak	0,250	BF-1060
	G 1/8"	in Linie	G 1/4	Zamak	0,230	BF-1061
Anwendung wenn keine Batteriemo	ontage möglich ist					

Grundplatte Modulsystem, Einzel-oder Batteriemontage, bodenseitige Anschlüsse mit getrennter Entlüftung

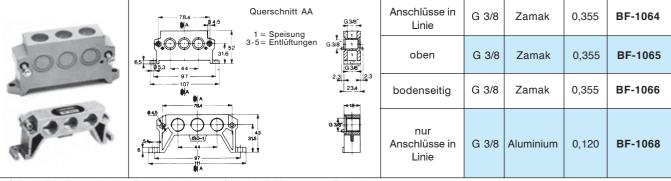
Einzelmontage: die beiden seitlichen Bohrungen (G1/8 - G1/4) verschließen. Batteriemontage mit gemeinsamer Zuluft: die mit N° 1 gekennzeichneten bodenseitigen Anschlüsse verschließen. Serienmäßig werden eingebaute Schrauben und Dichtung geliefert

Auf Anfrage werden nach Zeichnung geprüfte Batterien von Reihenmontageplatten geliefert

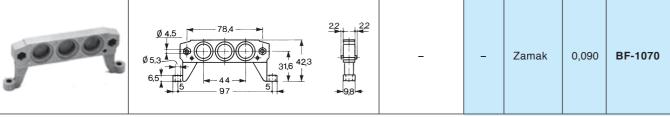
Vorteile

Die Grundplattenserie ISO 1 wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.

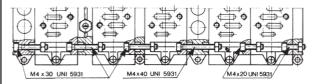
- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden.
- Schneller Zusammenbau mittels serienmäßig eingebauter Schraube.
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Batterie beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung), indem die Anzahl der Elemente beliebig erweitert oder vermindert werden kann.
- Einfache technische Handhabung.


Ebenfalls lieferbar ist eine Verschlußplatte für nicht benützte Ventilplätze, Artikelnummer BF-1085, komplett mit Schrauben und Dichtungen

Тур	Maximale Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse kg	Artikel- nummer
Grundplatte Batterier	montage Universalsystem, bodenseitige und	d seitliche Anso	chlüsse	mit geme	insamer	Entlüftung
	\$5,1x21	bodenseitige und seitliche Anschlüsse bodenseitige pneum. Impulse	G 1/8	Aluminium	0,280	BF-1071
1.000.	G1/4*1/8 -18		G 1/4	Aluminium	0,275	BF-1072
	78,4 94,5	bodenseitige und seitliche Anschlüsse	G 1/8	Aluminium	0,300	BF-1071S
	1 = Speisung 12-14 = Steuerung 12*-14* = seitliche Steuerungen	seitliche pneum. Impulse	G 1/4	Aluminium	0,295	BF-1072S


Möglichkeit seitlicher und bodenseitiger Anschlüsse. Die nicht verwendeten Bohrungen mit Stopfen verschließen. Serienmäßig werden eingebaute Schrauben, Dichtungen und Stopfen geliefert

Eintrittsplatte Universalsystem



Sollte die Batterie aus mehr als 4 Einheiten bestehen, empfiehlt sich die Montage von 2 Eintrittsplatten. Auf Anfrage ist eine Mischversion erhältlich. Serienmäßig werden eingebaute Schrauben und Dichtungen geliefert

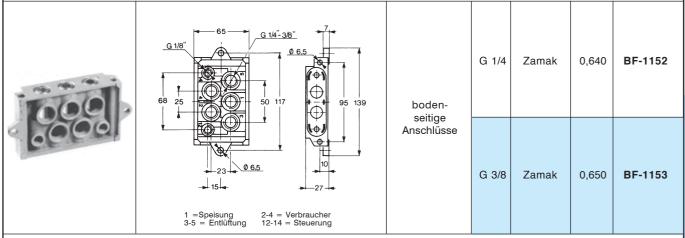
Endplatte Universalsystem

Mit der Endplatte erhält man eine Geschwindigkeitsregelung des Zylinders indem die Steuerungen frontal zentralisiert werden. Für die Batteriemontage wird die Endplatte verwendet, wobei bei beiden Elementen die mittlere blinde Bohrung durchstoßen werden muß. G 1/8 Anschlüsse für Schalldämpfer vorhanden. Serienmäßig werden eingebaute Schrauben und Dichtungen geliefert

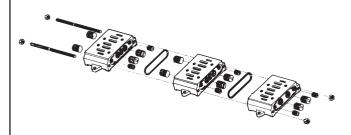
Auf Anfrage werden nach Zeichnung geprüfte Batterien von Reihenmontageplatten geliefert

Vorteile

Die neue Grundplattenserie ISO 1 wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.


- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden.
- Schneller Zusammenbau mittels serienmäßig eingebauter Schraube
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Batterie beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung), indem die Anzahl der Elemente beliebig erweitert oder vermindert werden kann
- Einfache technische Handhabung

Ebenfalls lieferbar ist eine Verschlußplatte für nicht benützte Ventilplätze, Artikelnummer BF-1085. komplett mit Schrauben und Dichtungen

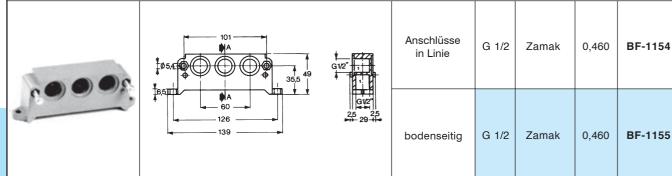

Einzelgrundplatte mit seitlichen Anschlüssen G 1/4 Zamak 0,640 BF-1150 Anschlüsse in Linie G 3/8 Zamak 0,650 BF-1151	Тур	Maximale Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse kg	Artikel- nummer					
Anschlüsse in Linie G 3/8 Zamak 0,640 BF-1150 1 = Speisung 2-4 = Verbraucher	Einzelgrundplatte mit seitlichen Anschlüssen											
1 = Speisung 2-4 = Verbraucher	Listres.			G 1/4	Zamak	0,640	BF-1150					
		1 = Speisung 2-4 = Verbraucher	in Linie	G 3/8	Zamak	0,650	BF-1151					

Einzelgrundplatte, bodenseitige Anschlüsse

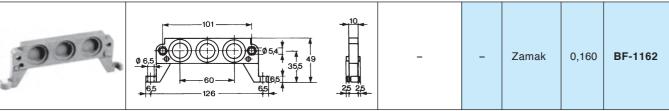
Anwendung, wenn keine Batteriemontage möglich ist

Batterie aus Grundplatten mit bodenseitigen Anschlüssen und Abluftdrossel

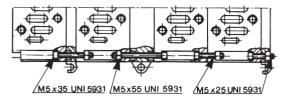
Über die Einzelgrundplatte mit bodenseitigen Anschlüssen kann eine Batteriemontage hergestellt werden, in die auch eine Abluftdrossel eingesetzt werden kann. Normalerweise wird diese Grundplattenversion nur auf spezielle Anfrage und Zeichnung montiert und überprüft geliefert. Diese Batterie hat die folgenden Eigenschaften: zusammengeführter Eingang und bodenseitige Benutzeranschlüsse, getrennte Entlüftung. Zur Batteriemontage sind eventuelle Abluftdrosseln und der Montagesatz, bestehend aus Zugstangen, Dichtungen und Stopfen extra zu bestellen.


Ebenfalls lieferbar ist eine Verschlußplatte für nicht benützte Ventilplätze, Artikelnummer BF-1175, komplett mit Schrauben und Dichtungen

Тур	Maximale Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse kg	Artikel- nummer				
Grundplatte Universalsystem, Batteriemontage, bodenseitige und seitliche Anschlüsse, zusammengeführte Entlüftung										
Note ze zi	G18" 24 G14-3/8" G14-38" 25 56,2 103 06.1×10 205	bodenseitige und seitliche	G 1/4	Zamak	0,800	BF-1160				
	103 (95.14) 113 (95.4) 1 = Speisung 2.4 = Verbraucher 3.5 = Entlüftung 12-14 = Steuerung	Anschlüsse	G 3/8	Zamak	0,800	BF-1161				


Möglichkeit seitlicher und bodenseitiger Anschlüsse. Die nicht verwendeten Bohrungen mit Stopfen verschließen Serienmäßig werden eingebaute Schrauben, Dichtungen und Stopfen geliefert

Eintrittsplatte Universalsystem

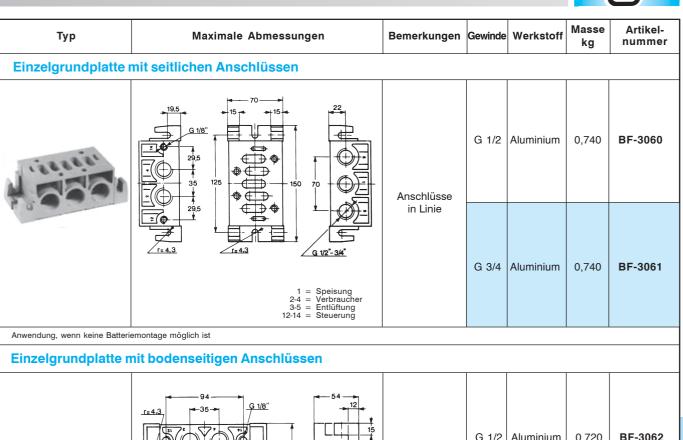


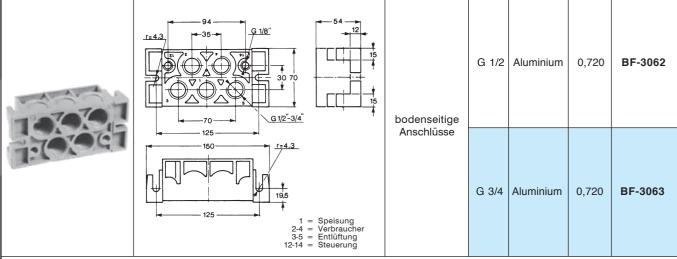
Sollte die Batteriemontage aus mehr als 4 Einheiten bestehen, empfiehlt sich die Montage von 2 Eintrittsplatten. Auf Anfrage ist eine Mischversion erhältlich. Serienmäßig werden eingebaute Schrauben und Dichtungen geliefert.

Endplatte Universalsystem

Mit der Endplatte werden die Grundplatten einer Batterie getrennt, um über die zusätzliche Abluftdrossel-Grundplatte eine Regulierung der einzelnen Ventile zu ermöglichen. In diesem Fall muß die mittlere blinde Bohrung durchstoßen werden. Darüberhinaus kann die Endplatte mit einer zusätzlichen Eintrittsplatte für zwei oder mehrere Druckstufen verwendet werden. In diesem Fall müssen die beiden seitlichen blinden Bohrungen durchstoßen werden.

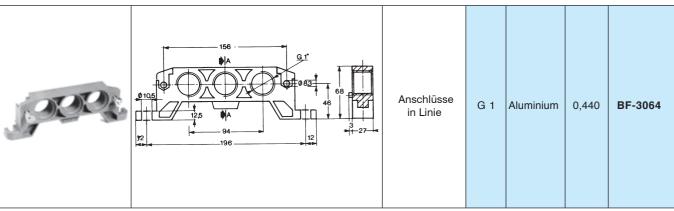
Auf Anfrage werden nach Zeichnung geprüfte Batterien von Reihenmontageplatten geliefert


Vorteile

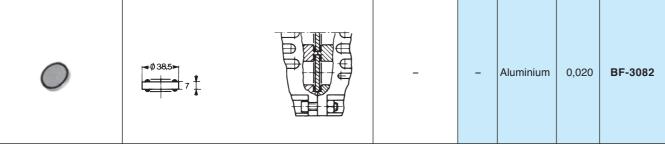

Die neue Grundplattenserie ISO 2 wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.

- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden
- Schneller Zusammenbau mittels serienmäßig eingebauter Schraube
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Batterie beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung), indem die Anzahl der Elemente beliebig erweitert oder vermindert werden kann
- Einfache technische Handhabung

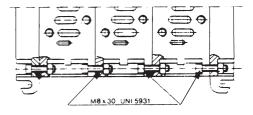
Ebenfalls lieferbar ist eine Verschlußplatte für nicht benützte Ventilplätze, Artikelnummer **BF-1175**, komplett mit Schrauben und Dichtungen


Anwendung, wenn keine Batteriemontage möglich ist

Тур	Maximale Abmessungen	Bemerkungen	Gewinde	Werkstoff	Masse kg	Artikel- nummer					
Grundplatte Universa	Grundplatte Universalsystem, Batteriemontage, bodenseitige und seitliche Anschlüsse, zusammengeführte Entlüftung										
	bodenseitige und seitliche	G 1/2	Aluminium	1,100	BF-3071						
	1 = Speisung 2.4 = Verbraucher 3.5 = Entlüftung 12-14 = Steuerung	Anschlüsse	G 3/4	Aluminium	1,100	BF-3072					


Möglichkeit seitlicher und bodenseitiger Anschlüsse. Die nicht verwendeten Bohrungen mit Stopfen verschließen. Serienmäßig werden eingebaute Schrauben, Dichtungen und Stopfen geliefert

Eintrittsplatte Universalsystem

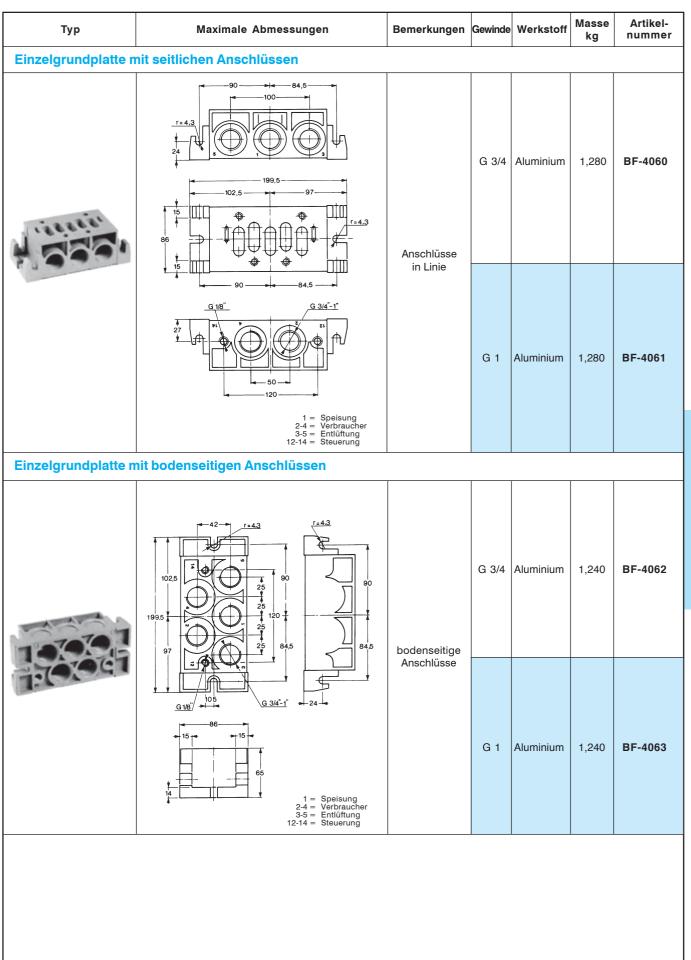


Für jede Batterie müssen 2 Eintrittsplatten verwendet werden. Jede Eintrittsplatte kann beliebig rechts oder links angeordnet werden. Serienmäßig werden eingebaute Schrauben und Dichtungen geliefert

Stopfen Universalsystem

Anwendung wenn zwei Druckstufen erforderlich sind

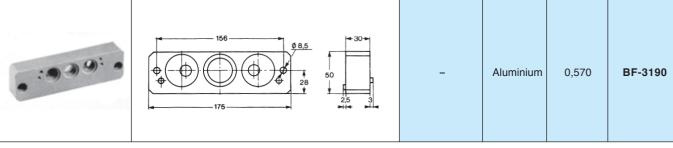
Auf Anfrage werden nach Zeichnung geprüfte Batterien von Reihenmontageplatten geliefert


Vorteile

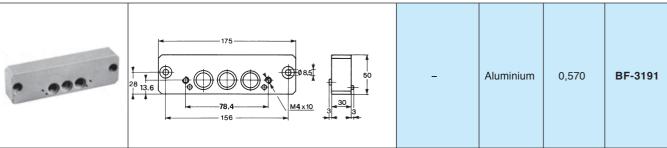
Die neue Grundplattenserie ISO 3 wurde unter Berücksichtigung der auftretenden Probleme konzipiert und patentiert.

- Die Anzahl der Plätze auf der Grundplatte kann im Moment der Verwendung festgelegt werden.
- Schneller Zusammenbau mittels serienmäßig eingebauter Schraube.
- Die Möglichkeit, durch Ein- und Ausbau der Elemente die Funktion jeder Batterie beliebig zu entscheiden (Druckdifferenzierung, Entlüftungsregelung), indem die Anzahl der Elemente beliebig erweitert oder vermindert werden kann
- Einfache technische Handhabung

Ebenfalls lieferbar ist eine Verschlußplatte für nicht benützte Ventilplätze, Artikelnummer **BF-3175**, komplett mit Schrauben und Dichtungen



Тур	Maximale Abmessungen	Bemerkungen	Werkstoff	Masse kg	Artikel- nummer						
Verbindungs-Zwisc	Verbindungs-Zwischenplatte für Universalgrundplatten von Größe 1 bis Größe 2										
•.,999.•	78,4 16,5 12,6 113 125 125 130 144x10 15 16,5 12,6 17,0 18,4 18,4 19,5	-	Aluminium	0,110	BF-1190						


Diese Zwischenplatte ermöglicht die Zusammenstellung von Größe 1 und Größe 2 in einer Batterie, mit zusammengeführter Speisung und zusammengeführter Entlüftung (auf Anfrage Speisung und/oder Entlüftung getrennt möglich)

Verbindungs-Zwischenplatte für Universalgrundplatten von Größe 2 bis Größe 3

Diese Zwischenplatte ermöglicht die Zusammenstellung von Größe 2 und Größe 3 in einer Batterie, mit zusammengeführter Speisung und zusammengeführter Entlüftung (auf Anfrage Speisung und/oder Entlüftung getrennt möglich)

Verbindungs-Zwischenplatte für Universalgrundplatten von Größe 1 bis Größe 3

Diese Zwischenplatte ermöglicht die Zusammenstellung von Größe 1 und Größe 3 in einer Batterie, mit zusammengeführter Speisung und zusammengeführter Entlüftung (auf Anfrage Speisung und/oder Entlüftung getrennt möglich)

Verschlußplatte für Grundplatten Größe 1-2-3

• •	M5 x8 UNI 5831 M5 x8 UNI 5831 A 63 B 63 B 738 B 738	ISO 1 (für alle Grundplatten- modelle)	Stahl	0,030	BF-1085
9 0	M6x10 UNI 5831	ISO 2 (für alle Grundplatten- modelle)	Stahl	0,050	BF-1175
0 0	M8x15 UNL 5931	ISO 3 (für alle Grundplatten- modelle)	Stahl	0,080	BF-3175

Es besteht die Möglichkeit, bei der Planung einer Anlage mehr Grundplatten einzusetzen, als am Anfang erforderlich sind, indem man sie zuerst ungenutzt schließt und später mitverwendet. Serienmäßig werden eingebaute Schrauben und Dichtungen geliefert

Diese Ventile werden in einer breiten Palette mit Anschlüssen G 1/8 bis G 11/2 hergestellt und eignen sich besonders für jene Anwendungen, bei denen erhöhter Durchfluß und eine höhere Anzahl von Zyklen notwendig sind. Das Sitzventilsystem hat sich bereits bestens bewährt und garantiert eine interessante Leistungvielfalt und ein günstiges Preis/Leistungs-Verhältnis.

TECHNISCHE DATEN

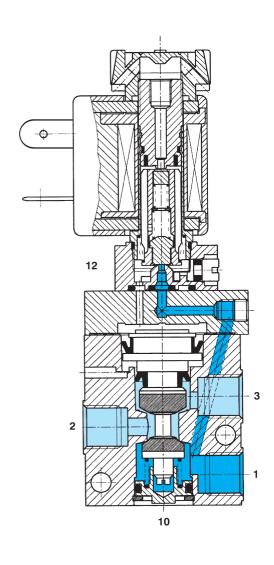
Internes konisches Sitzsystem und Membrane aus Vulkollan

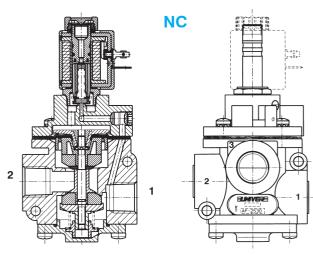
Umgebungstemperatur: 50° C Mediumstemperatur: -5°C \div +60°C Betriebsmedium: gefilterte Luft 50 μ m,

mit oder ohne Schmierung Betriebsdruck: 10 bar max.

Indirekte elektropneumatische Steuerung Rücklauf mit pneumomechanischer Feder

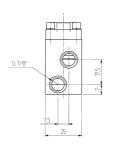
Versionen 2/2 lieferbar

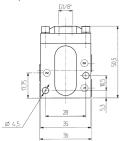

Spulen: U1 Serie DA-...; U2 SerieDB-... Siehe Zubehör 10-V, Abs. Spulen

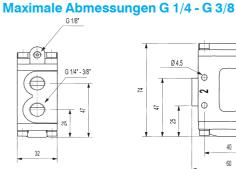

ANMERKUNG: Es ist möglich, eine annähernde Schätzung des Faktors "CV" zu erhalten, indem die in NI/min angeführten Durchflußwerte

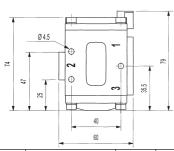
durch "962" dividiert werden

G 1/8 - G 3/8

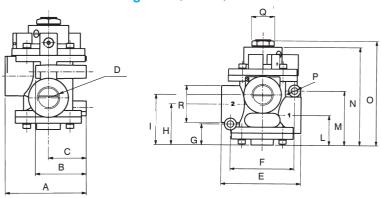


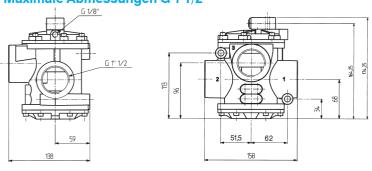

- 1= Speisung
- 2-4= Verbraucher
- 3-5= Entlüftung
- 14= Steuerung 12= Bücklauf




Servoventile 3/2 für Druckluft Rücklauf Durchfluß Ansprechzeit ms Steuer. Masse Ansch-Druck (bar) Wege Artikelnr. Тур Erreg. (14) Aberr. (12) (14) mm NI/min. (12) lusse kg 3/2 NC AF-2600 G 1/8 5,5 580 5 8 6 3,5 0,21 3/2 NO AF-2700 3/2 NC AF-2601 pneumopneumat. 7 0,54 G 1/4 8 1100 5 6 4 mechanisch 3/2 NO AF-2701 NC 3/2 NC AF-2606 G 3/8 10 1500 0,52 5 7 6 4 3/2 NO AF-2706

Maximale Abmessungen G 1/8

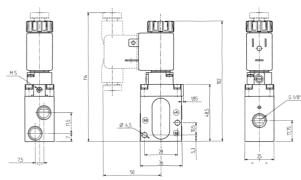




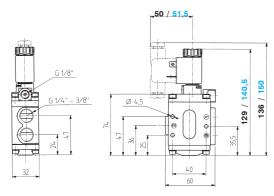
Тур	Steuer. (14)	Rücklauf (12)	Wege	Ansch- lusse	Ø mm	Durchfluß NI/min.	Ansprec Erreg. (14)	hzeit ms Aberr. (12)	Druck min.	(bar) max.	Masse kg	Artikelnr.
	pneumat.		3/2 NC-NO	G 1/2	15	5400	7	10	6	4	1,27	AF-2603
		pneumo-	3/2 NC-NO	G 3/4	19	6500	7	10	6	4	1,10	AF-2610
NC NO		mechanisch	3/2 NC-NO	G 1	25	13500	10	12	6	4	1,59	AF-2615
			3/2 NC-NO	G 1 1/2	39	35000	36	15	6	4	2,19	AF-2620

Maximale Abmessungen G 1/2 - G 3/4 - G1

Maximale	Abmess	ungen	G 1	1/2
1	E + 1011			


Die	Artikelnummern	der	Magnetventile	verstehen	sich	ohne Spulen

	G1/2 G3/4	G1
Α	75	88,5
В	47	88,5
С	35	88,5
D	G1/2 G3/4	G1
Е	78,5	88,5
F	63	88,5
G	21	88,5
Н	41	88,5
I	50,5	88,5
L	30	88,5
M	54,5	88,5
N	100	88,5
0	105	88,5
Р	Ø 6,4	Ø 88,5
Q	G1/4	G1/4
R	37	



Elektroventile für Druckluft Rücklauf Durchfluß Ansprechzeit ms Steuer. Ansch-Ø Masse Druck (bar) Тур Wege Artikelnr. Spule (14)(12)lusse mm NI/min. Erreg. (14) | Aberr. (12) kg AF-2500 3/2NC U1 G 1/8 5,5 580 0,25 15 20 1,5 10 3/2NO AF-2501 U1 20 23 3/2NC U1 AF-2510 1100 G 1/4 8 1,6 10 0,58 15 20 3/2NO AF-2511 U1 20 23 U1 3/2NC AF-2520 pneumelektrisc G 3/8 10 1500 1,6 10 mechan. 15 20 3/2NO AF-2521 U1 3/2NC U2 20 23 AF-2515 1100 0,70 G 1/4 8 1,6 10 NC 3/2NO 15 AF-2516 U2 20 3/2NC 20 23 U2 AF-2522 G 3/8 10 1500 0,70 1,6 10 U2 3/2NO 15 20 AF-2523

Maximale Abmessungen G 1/8

Maximale Abmessungen G 1/4 und G 3/8

Abmessungen mit Spule U2 in Farbe gedruckt

Тур	Steuer. (14)	Rücklauf (12)	Wege	Ansch- lusse	Ø mm	Durchfluß NI/min.	Anspred Erreg. (14)			(bar) max.	ka	Artikelnr.	Spule			
			3/2NC G 1/	G 1/2	G 1/2 15	G 1/2 15 5	15 5400 1	17	27	2	10	1,19	AF-2530	U2		
			3/2NO	G 1/2	13	3400	30	22	3	10	1,13	AF-2531	02			
			3/2NC	G 3/4	19	6500	17	27	2	10	1,13	AF-2540	U2			
010	elektrisc	pneum-	3/2NO	G 3/4	19	0300	30	22	3	10	1,13	AF-2541	02			
	elektrisc	mechan.	3/2NC							20	32	2,2	10		AF-2545	U2
NC NO			3/2NO	G 1	25	13500	28	23	3	10	1,62	AF-2546	02			
			3/2NC	G 1 1/2	39	35000	47	22	2,5	10	2,27	AF-2565	U2			
			3/2NO				55	20	3	10	,	AF-2561				

Maximale Abmessungen G 1/2 - G 3/4 - G 1

G 1/8" 6 1/8" 8 2 8 515 62 88

Maximale Abmessungen G 1 1/2

	G1/2	G3/4	G1
Α	75	75	89
В	47	47	55
С	35	35	40
D	G 1/2	G 3/4	G1
Е	78,5	78,5	101
F	63	63	76
G	21	21	25,5
Н	41	41	51
Т	50,5	50,5	64
L	30	30	38
М	54,5	54,5	62,5
N	100	100	115
0	150	150	167
Р	154	154	174
Q	Ø6,4	Ø6,4	Ø8,4
R	50,5	50,5	50

Die Artikelnummern der Magnetventile verstehen sich ohne Spulen

Eine komplette Serie von Magnet- und Servoventilen für Vakuum mit Anschlüssen G 1/8 bis G 1 1/2, um allen Ansprüchen gerecht zu werden. Das interne Sitzsystem garantiert Zuverlässigkeit und lange Lebensdauer.

TECHNISCHE DATEN

Internes konisches Sitzsystem und Membrane aus Vulkollan für Magnetventile für Vakuum, drucklufthilfsgesteuert; Sitzdichtungen aus Silikon für Magnetventile für Vakuum, mit Vakuum indirekt gesteuert.

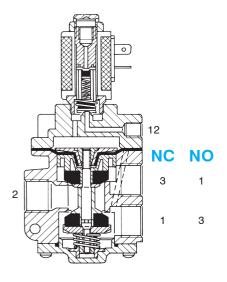
Umgebungstemperatur: 50°C Mediumstemperatur: -5°C ÷ +60°C

Betriebsmedium: gefilterte Luft 50 μ m, mit oder ohne

Schmierung

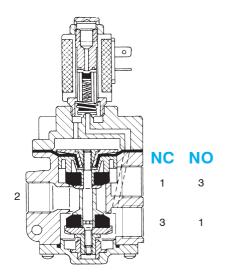
Indirekte Steuerung mit Vakuum

Automatischer Rücklauf mit Vakuum


Spulen U1 Serie DA-...; U2 Serie DB-...; Abschnitt Zubehör Seite 15-V.

Lieferbar 2/2 Version für Magnetventile für Vakuum, drucklufthilfsgesteuert; bei Magnetventilen für Direktvakuum, vakuumhilsgesteuert, erhält man di 2/2 Version indem die

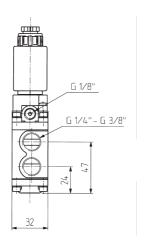
Magnetventil für Vakuum, mit Vakuum hiltsgesteuert

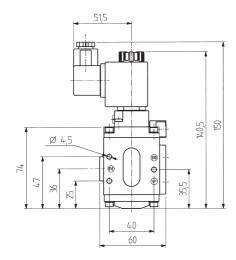

Entlüftung mit Stopfen verschlossen wird.

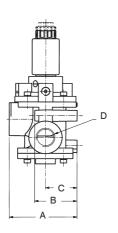
Magnetventil für Vakuum, drucklufthilfsgesteuert

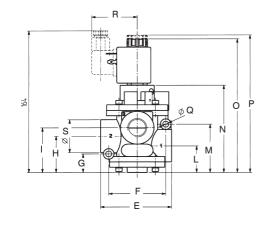
Verbraucher 3 = Entlüftung

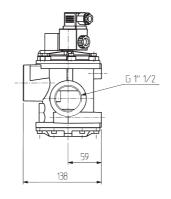
12 = Luftsteuerung

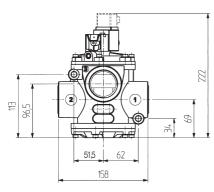

Magnetventil 3/2 für Vakuum, mit Vakuum indirekt gesteuert


	Тур	Symbol	Wege	Ansch-	Ø	zeit	rech- (ms)	Pumpe	Vak	uum	Masse	Artikelnr.	Spule
l	.,,,,	Symbol	ogo	lusse	mm	Erreg. (14)	Aberr. (12)	max m³/h	min.	max.	kg		Оршо
			3/2 NC	G 1/4	8	25	16	4			0,52	AG-3210	U2
		NC	3/2 NO	G 1/4	0	20	14	4			0,58	AG-3211	U2
	2	2	3/2 NC	G 3/8	10	25	16	10			0,56	AG-3214	U2
	2798	1 3	3/2 NO	4 6/6	10	20	14	10			0,56	AG-3215	U2
	Sections (CE & Sections)		3/2 NC	G 1/2	15	30	15	20	150	759,5	1,19	AG-3222	U2
	- 8		3/2 NO			20	18		mm Hg	mm Ĥg	1,19	AG-3223	U2
			3/2 NC	G 3/4	19	30	15	35	610	0,5	1,13	AG-3232	U2
		NO	3/2 NO	Q 0/4	13	20	18	00	Torr	Torr	1,13	AG-3233	U2
	9	2	3/2 NC	G 1	25	38	18	90			1,62	AG-3242	U2
		3 1	3/2 NO	<u>.</u>		25	20				1,62	AG-3243	U2
			3/2 NC	G 11/2	39	75	50	180			2	AG-3256	U2
			3/2 NO			70	60				2	AG-3257	U2
1				Dia A	rtikalı	aumm	arn de	r Maan	atvanti	a varet	tahan c	ich ohne Sn	ullan

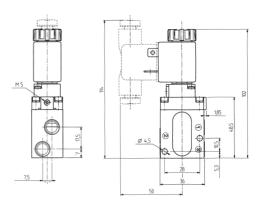

Maximale Abmessungen

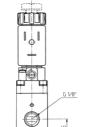

G 1/4 - G 3/8

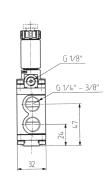


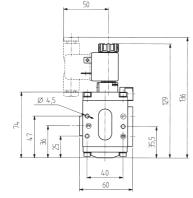

G 1/2 - G 3/4 - G1

G 1 1/2

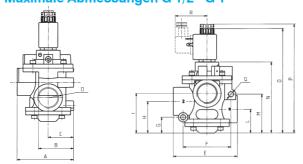

	G1/2 - G3/4	G1
Α	75	89
В	47	55
С	35	40
D	G1/2-G3/4	G1
Е	78,5	101
F	63	76
G	21	25,5
Н	41	51
- 1	50,5	64
L	30	38
M	54,5	62,5
N	100	115
0	150	167
Р	154	175
Q	Ø 64	Ø 84
R	50,5	50
S	37	

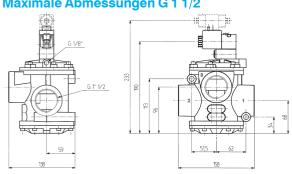



Magnetventile 3/2 für Vakuum, drucklufthilfsgesteuert


Тур	Symbol	Wege	Ansch- lusse		Ansp zeit Erreg.	rech- (ms) Aberr. (12)	Pumpe max m³/h	Vakuum max	Druck (bar) min.	Masse kg	Artikelnr.	Spule
all the same of th	NC	3/2 NC	G 1/8	5,5	14	25	1,5		1,5	0,25	AG-3001	U1
PR.	2	3/2 NO	G 1/0	5,5	14	23	1,5	759,5 mm Hg		0,23	AG-3002	01
181	T T T	3/2 NC	G 1/4	8	16	27	4		2,5	0,58	AG-3009	
	NO	3/2 NO	G 1/4	0	10	21	7		2,3	0,50	AG-3010	U2
6 11	Z T M	3/2 NC	G 3/8	10	16	27	10	0,5 Torr	2.5	0.56	AG-3011	
	0 1 3	3/2 NO	G 3/6	10	10	21	10	1011	2,5	0,56	AG-3012	

Maximale Abmessungen G 1/8



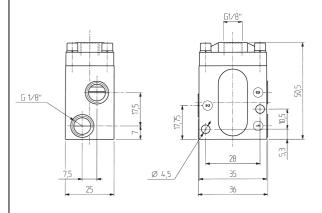

Maximale Abmessungen G 1/4 und G 3/8

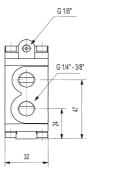
Тур	Symbol	Wege	Ansch- lusse		Ansp zeit Erreg.	(ms)	Pumpe max m³/h	Vakuum max	Druck (bar) min.	Masse kg	Artikelnr.	Spule
a	NC	3/2 NC	G 1/2	15	16	40	20		3	1,19	AG-3020	
	2	3/2 NO	·					759,5			AG-3021	
The state of the s		3/2 NC	G 3/4	19	16	40	35	mm Hg	3	1,13	AG-3040	
		3/2 NO								,	AG-3041	
A STEEL	NO	3/2 NC	G 1	25	18	42	90	0.5	3	1,62	AG-3050	U2
	2	3/2 NO						0,5 Torr		′	AG-3051	
9	M 1/1/1	3/2 NC	G 1 1/2	39	60	38	180	.311	4	2,25	AG-3062	
		3/2 NO								_,	AG-3063	

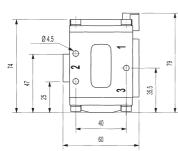
Maximale Abmessungen G 1/2 - G 1

Maximale Abmessungen G 1 1/2

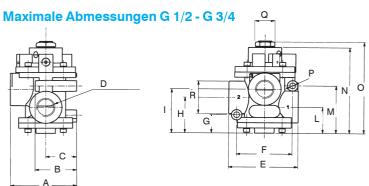
	G 1/2	G 3/4	G 1
Α	75	75	89
В	47	47	55
С	35	35	40
D	G 1/2	G 3/4	G1
Е	78,5	78,5	101
F	63	63	76
G	21	21	25,5
Н	41	41	51
I	50,5	50,5	64
L	30	30	38
M	54,5	54,5	62,5
N	100	100	115
0	150	150	167
Р	154	154	174
Q	Ø 6,4	Ø 6,4	Ø 8,4
R	50,5	50,5	50


Die Artikelnummern der Magnetventile verstehen sich ohne Spulen


Servoventile 3/2 für Vakuum, drucklufthilfsgesteuert


Тур	Symbol	Wege	Ansch- lusse	Ø mm	zeit		Pumpe max m³/h	Vakuum max	Druck (bar) min.	Masse kg	Artikelnr.
	NC	3/2 NC	G 1/8	5,5	3	6	1,5	750.5	1,5	0,21	AG-3071
	2	3/2 NO	G 1/0	5,5	0		1,5	759,5 mm Hg	1,5	0,21	AG-3072
-	T T T T T T T T T T T T T T T T T T T	3/2 NC	G 1/4	8	4	8	_		0.5	0,54	AG-3073
	NO .	3/2 NO	G 1/4	0	4	0	4		2,5	0,54	AG-3074
000	ZD, J,M	3/2 NC					4.0	0,5 Torr		0.50	AG-3075
	0 1 3	3/2 NO	G 3/8	10	4	8	10	1011	2,5	0,52	AG-3076

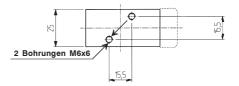
Maximale Abmessungen G 1/8

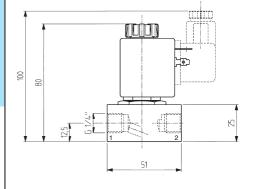


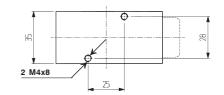
Maximale Abmessungen G 1/4 - G 3/8

Тур	Symbol	Wege	Ansch- lusse		Ansp zeit Erreg.		Pumpe max m³/h	Vakuum max	Druck (bar) min.	Masse kg	Artikelnr.
		3/2 NC	G 1/2	15	6	15	20		3	1,16	AG-3081
	NC ₂	3/2 NO						759,5 mm Hg			AG-3082
	T T M	3/2 NC	G 3/4	19	6	15	35	11111119	3	1,10	AG-3091
	3 1	3/2 NO									AG-3092
	NO .	3/2 NC	G 1	25	7	16	90	0,5 Torr	3	1,59	AG-3100
0		3/2 NO						1011		,	AG-3101
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/2 NC	G 1 1/2	39	65	25	180		4	2,19	AG-3110
		3/2 NO							·	,	AG-3111

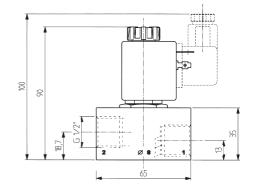
Maximale Abmessunger	1 G 1 1/2
G 1" 1/2	© S S S S S S S S S S S S S S S S S S S


	G1/2-G3/4	G1
Α	75	88,5
В	47	55
С	35	40
D	G1/2-G3/4	G1
Е	78,5	101
F	63	76
G	21	25,5
Н	41	51
- 1	50,5	64
L	30	38
М	54,5	62,5
N	100	115
0	105	120,5
Р	Ø 64	Ø 84
Q	G1/4	G3/4
R	37	




Solenoidventile 3/2 - 2/2 mit direkter Steuerung für Vakuum Ansprech-zeit (ms) Erreg. Aberr. Ansch- Ø Pumpe Vakuum max Wege Тур Symbol Masse kg Artikelnr. lusse mm max m³/h mm Hg AG-3313 G 1/4 6* 15 8 5 0,220 3/2 759,5 0,5 NC G 1/2 11* 28 10 10 0,250 AG-3332 **Weitere Ventile** Ansch-Ansch-Ø Ø Symbol Wege Artikelnr. Wege Artikelnr. mm mm lusse lusse AG-3300 AG-3320 3 8 U2 Spule 17 VA AG-3301 10 AG-3321 4 2/2 2/2 G 1/2 G 1/4 NC NC 5 AG-3302 11 AG-3322 AG-3303 6 3-3* AG-3310 8-3* AG-3330 Spannung 24/50-60Hz 110/50-60Hz 3/2 DB-0607 DB-0608 3/2 4-3* AG-3311 G 1/2 10-3* AG-3331 G 1/4 NC NC

5-3*


Maximale Abmessungen G 1/4 - G 1/2

AG-3312

VAKUUM 1-P = Pumpe 2-A = Verbraucher 3-R = Entlüftung

Die Artikelnummern der Magnetventile verstehen sich ohne Spulen

^{*} Ventile mit fester Entlüftung Ø 3 mm

COMPACT P10/P15

>>KATALOG TECHNISCHER

- → Niedrige Standard-Stromaufnahme
- → Schnelle Ansprechzeiten
- → Hoher Durchfluss
- → Kompakte Bauweise
- → Flexibler Anwendungsbereich

Inhaltsverzeichnis >>

P10F	COMPACT 10 mm mit Gewindeanschlüssen M5	11
P15F	COMPACT 15 mm mit Gewindeanschlüssen G 1/8	19
P15D	COMPACT 15 mm mit Gewindeanschlüssen G 1/8 Stecker 15 mm	22
P10B	COMPACT 10 mm für Grundplattenmontage	29
P15B	COMPACT 15 mm für Grundplattenmontage	35

www.univer-group.com

COMPACT P10/P15

B10 Nanoventil 10 mm

→ Niedrige Standard-Stromaufnahme (0,32 W)

Die Serie COMPACT wird serienmässig mit Pilotventil mit niedriger Leistungsaufnahme NANO_B10 geliefert

Schnelle Ansprechzeiten


Dank kürzerer Ansprechzeiten sind höhere Schaltspiele möglich

→ Hoher Durchfluss (P10: 310NI/min - P15: 800 NI/min)

Mit der Weiterentwicklung der traditionellen auf die neue **COMPACT** Serie angewandten Schiebertechnologie UNIVER werden hohe Durchflusswerte erreicht

Kompakte Bauweise

Durch die kompakte Bauweise des Ventilkörpers (10 -15 mm) sind kleinere Einbaumasse möglich

Lieferbar mit Gewinde am Körper (P10F/P15F) und mit Körper für Grundplattenmontage (P10B/P15B) in 5/2 Version (einseitiger und zweiseitiger Impuls), 5/3 und 3/2+3/2 Version. Elektrische und pneumatische Betätigung

→ Hohe Betriebsdauer

Die Konstruktionsmerkmale, die allen UNIVER Ventilen gemein sind, gewährleisten eine Lebensdauer von ca. 50 Millionen Schaltspielen (unter korrekten Einsatzbedingungen)

■ Maximale Einsatzflexibilität

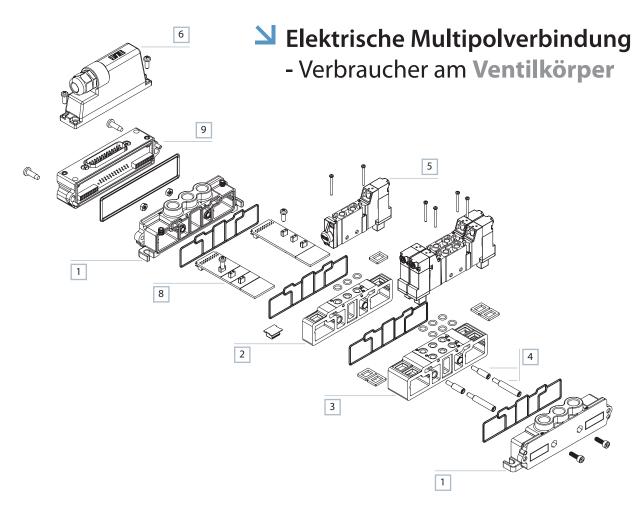
Der Einsatz von Modulgrundplatten (einfach und doppelt) ermöglicht eine vielseitige Zusammenstellung von Ventilinseln sowohl für den Einzelanschluss als auch für den Multipolanschluss

☐ Vereinfachte Installation

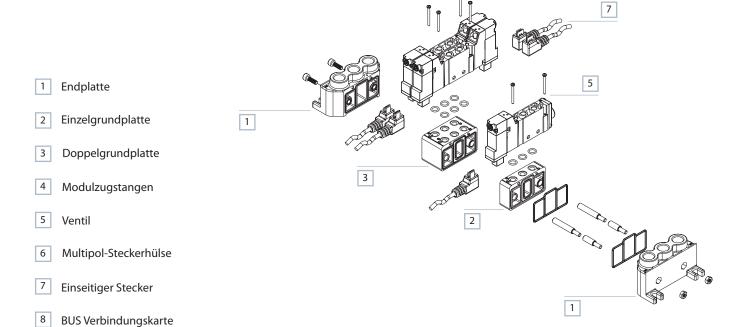
Die Installation von Rohren und Verschraubungen ist einfacher, weil sich alle Druckluftverbindungen auf derselben Seite befinden

Zusammenfassende Tabelle VENTILTYPEN

			PF Ventil mi	t Gewinde	PB Grund	plattenventil
BAI	JREII	1E	P10F	P15F	P10B	P15B
	7	Einseitiger Impuls				
	5/2	Zweiseitiger Impuls				
		Geschlossene Mittelstellung				
FUNKTIONEN	5/3	Offene Mittelstellung		•		
UNKT		Mittelstellung unter Druck				
	7	NC+NC		•	•	
	3/2+3/2	NC+NO		•		
	Ŋ	NO+NO				
BETÄTIGUNG		Elektrisch			•	
		Pneumatisch		•	•	•
RÜCKSTELLUNG		Mechanische Feder	•	-	-	-
RÜCKS		Pneumo-mechanische Feder		•	•	
24\	/DC S	PANNUNG				
LEU	ICHT/	NZEIGER (LED)				
HAI	NDBE	TÄTIGUNG 1				
PLU	IG-IN	VERBINDUNG (IP-65)				
AN:	SCHL	JSS 15mm (IP-65)	_	0	-	-
ANCHLÜSSE		M5	•	_	_	_
ANCI		G1/8	_		_	_
EXT	ERNE	SERVOSPEISUNG	0	0	0	0
DRU	JCK				s 10 bar pneumatische Betätigu	
BET	RIEBS	SMEDIUM	Gefilt		ıft 10 μm, mit oder ohne Schmie	rung
		NGSTEMPERATUR		-5°÷		
		ATUR DES BETRIEBSMEDIUMS		50° C		
		ÖRPER		Zar		
		IGEN		Nitrilg		
DUI	RCHF	LUSS NI/min	310	800	310	800

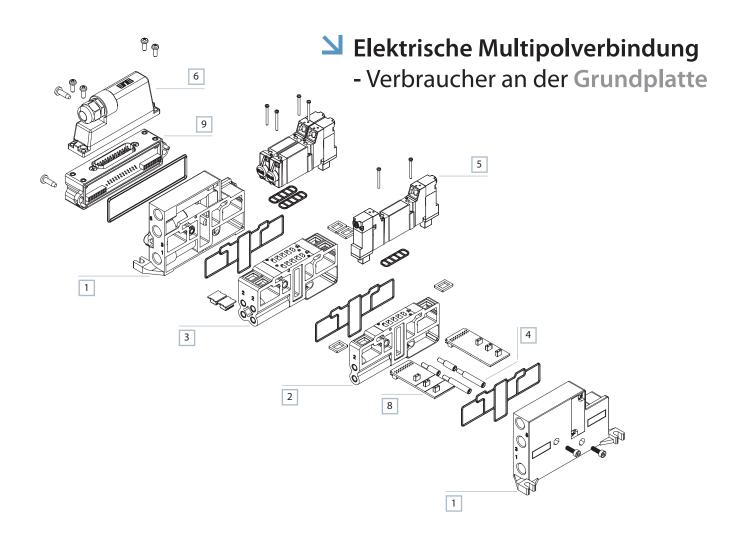


Zusammenfassende Tabelle BATTERIEBLOCK

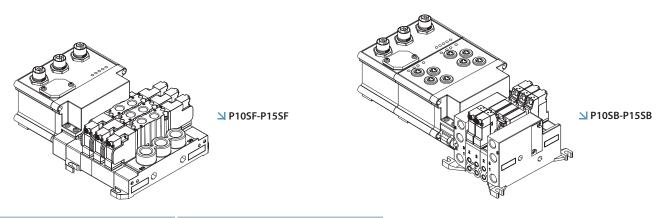

						P	SB					
					Grundplatte fi elektrische Ve	ür integrierte rbindung	Grundplatte fi mit Aussenste	ir Verbindung cker	Grundplatte fi elektrische Ve	ür integrierte rbindung		
									The state of the s			
	BAUR	REIHE			P10SF	P15SF	P10SF	P15SF	P10SB	P15SB		
	GRUNDPLATTE			1 Platz								
	GRUND			2 Plätze	-							
	ELEKTRISCHER ANSCHLUSS			Einzelgrundplatte	_	_			_	_		
			RISCHER			SUB - D 25-polig			_	_		
				SUB - D 37-polig	_	0	_	_	_	0		
				Seriell	0	0		_	0	0		
		7.5.	į	G1/8	•	_		_		_		
		-	<u> </u>	G1/4	_	-	_		_	-		
			ш	M5	-	_	-	_	•	_		
	ANSCHLUSS		GEWINDE	M7	_	_	_	-	•	_		
	ANSC	2,4		G1/8					_			
		2,4 SCNELLVERBINDUNGEN	OUNGEN	Ø4	_	_	_	_				
			Ø6	_	_	_	_	_	-			
		SCNELLVE		Ø8	_	_	_	_	_	-		

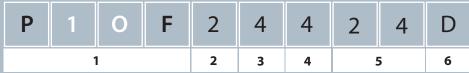
Max. Anzugsmoment der Verschraubungen auf Gewinde der Grundplatten und Endplatten

Gewinde	Max. Moment (Nm)
M5	3
M7	3
G 1/8	3 (2 pro P10SB)
G 1/4	10



→ Einseitige elektrische Verbindung


Multipolverbindungsmodul


SERIELLES ÜBERTRAGUNSSYSTEM TCXX

Für weitere Informationen wenden Sie sich bitte an unsere Verkaufsabteilung

Anwendbares Protokoll		Mögliche Ko	Mögliche Kombinationen	
DeviceNet AS-I Can Open	Interbus PROFIBUS-DP	P10SF P15SF	P10SB P15SB	

TYPENSCHLÜSSEL

P10F

COMPACT 10 mm Gewindeanschlüsse M5

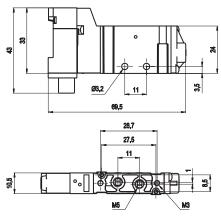
TECHNISCHE EIGENSCHAFTEN

Umgebungstemperatur		-5°÷ 50°
Temperatur Betriebsmedium		50° C max
Betriebsmedium	gefilterte, nicht entfeuchtete Druckluft 10 µm, mit ode	r ohne Schmierung
Schaltsystem		Schieber
Funktionen		5/2 -5/3-3/2 + 3/2
Betriebsdruck	elektrische E	Betätigung bis 9 bar
	pneumatische Be	etätigung bis 10 bar
Betätigung	elektropneumatisch indirek	t oder pneumatisch
Rückstellung	mechanische Feder, pneumo	mechanische Feder
Anschlüsse		M5
Nenndurchfluss (NI/min)	5/2	310
	5/3	230
	3/2+3/2	250

KONSTRUKTIONS - MERKMALE

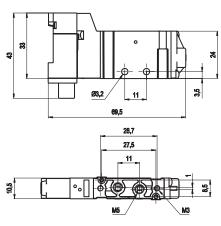
Ventilkörper	Zamak
Dichtungen	Nitrilgummi
Grundplatte	selbstlöschender Technopolymer
Betätiger	selbstlöschender Technopolymer
Schieber	Aluminium

ELEKTRISCHE DATEN


Pilotventil	NANO B10
Spannung	24 VDC (± 10%)
Stromaufnahme	beim Anlauf 5,5 W (25 ms), Erhaltung 0,32 W
Schutzklasse	IP65

Einseitiger Impuls

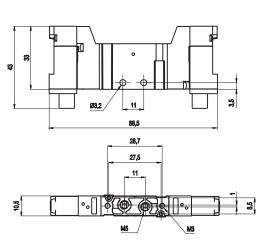
5/2



Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	zeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 + 2 12 5 3 3	elektrisch verstärkt	pneumomechan. Feder	1,5÷9	12	20	0,054	P10F24024

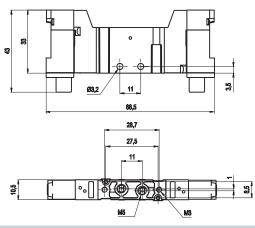
Einseitiger Impuls

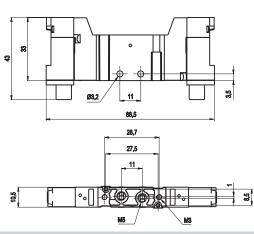
5/2



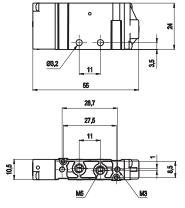
Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	zeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 - 12	elektrisch verstärkt	mechanische Feder	1,9÷9	10	21	0,054	P10F24124

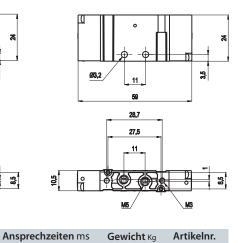
Beidseitiger Impuls


5/2


Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	nzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 H 12 51 3	elektrisch verstärkt	elektrisch verstärkt	0,7÷9	10	10	0,069	P10F24424

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprecl	nzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
GESCHLOSSENE Mittel	stellung						
14 4 2 12 12 12 12 12 15 1 3 3 12	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10F34424
OFFENE Mittelstellung							
14 W 12 T 12 T 12	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10F44424
Mittelstellung unter DR	UCK						
14 W 12 T T T T T T T T T T T T T T T T T T	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10F54424


Symbol	Betätigung	Rückstellung	Druck min/max	Ansprec	hzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
3/2 NC+3/2 NC							
14 12 12 12 14 15 3 14 12 2 2 2 14 15 3 14 12 2	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10F64424
3/2 NC+3/2 NO							
14 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10F74424
3/2 NO+3/2 NO							
14 12 12 14 15 3 1-1 2 2 5 1 1 3	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10F84424



Betätigung

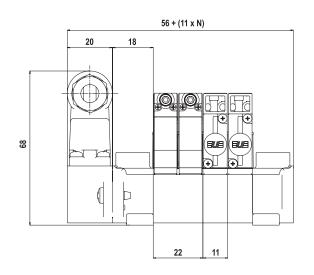
Rückstellung

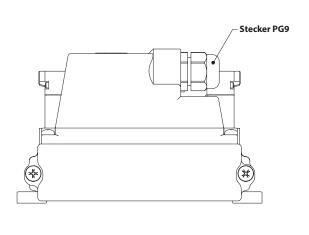
Druck min/max

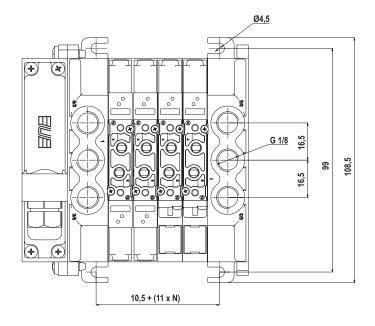
_	,	$\overline{}$
<u>'</u>	/	7

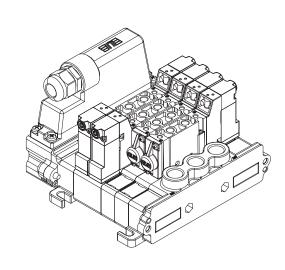
Symbol

EINSEITIGER IMPULS							
14 2 12 12 12 12 12 12 12 12 12 12 12 12 1	pneumatisch verstärkt	pneumomechan. Feder	1,5÷10	8	14	0,042	P10F230
EINSEITIGER IMPULS							
14 2 12 12 12 12 12 12 12 12 12 12 12 12 1	pneumatisch verstärkt	mechanische Feder	1,9÷10	7	16	0,042	P10F231
BEIDSEITIGER IMPULS							
14 2 12	pneumatisch verstärkt	pneumatisch verstärkt	0,6÷10	6	6	0,044	P10F233


5/3

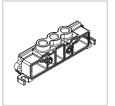

GESCHLOSSENE Mittel	GESCHLOSSENE Mittelstellung						
2 4 14 M 12 3 1 5	pneumatisch	pneumatisch	1,5÷10	7	20	0,044	P10F333
OFFENE Mittelstellung							
14 M 2 4 M 12 	pneumatisch	pneumatisch	1,5÷10	7	20	0,044	P10F433
Mittelstellung unter DR	UCK						
14 M 2 4 12 12 12 13 1 5	pneumatisch	pneumatisch	1,5÷10	7	20	0,044	P10F533


3/2 NC+3/2 NC							
14 12 y	pneumatisch	pneumatisch	1,3÷10	8	14	0,044	P10F633
3/2 NC+3/2 NO							
14 12 b	pneumatisch	pneumatisch	1,3÷10	8	14	0,044	P10F733
3/2 NO+3/2 NO							
√ 14 12 √ 14 12 √ 14 14 14 14 14 14 14 14 14 14 14 14 14	pneumatisch	pneumatisch	1,3÷10	8	14	0,044	P10F833


Integrierte elektrische Verbindung

N = Anzahl Ventilplätze

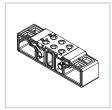
P10SF500


Speiseplatte G1/8 links für TIM Modul

TIM1024

Verbindungsmodul 25-polig Kontaktstift Typ D

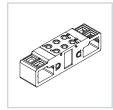
P10SF505


Speiseplatte G1/8 rechts

P10SF100

Grundplatte
1 Ventilplatz

P10SF200


Grundplatte 2 Ventilplätze

P10SF110

Grundplatte
1 Ventilplatz
1-3-5 geschlossen

P10SF210

☐ Grundplatte 2 Ventilplätze 1-3-5 geschlossen

P10SF550

■ Trennplatte für Speisedruck

P10SF560

 Abdeckplatte für nicht verwendeten Ventilplatz

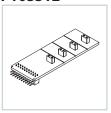
P10SF570

Zwischenspeiseplatte

P10STR**

Modulzugstangen

** = 01, 02, 05 Plätze


Verpackung je 100 Stck.

P10SS14**

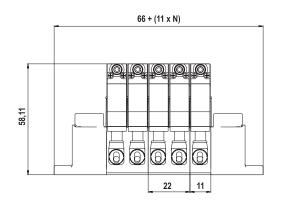
Seite 14 ** = 04, 06, 08, 10, 12 Plätze

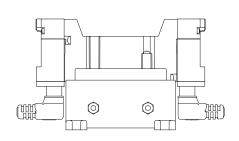
P10SS12**

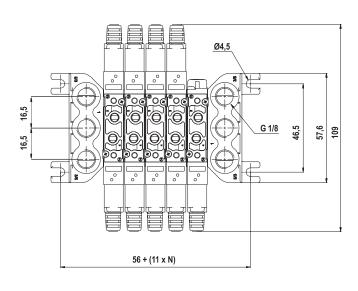
■ Busverbindungskarte Seite 12 ** = 04, 06, 08, 10, 12 Plätze

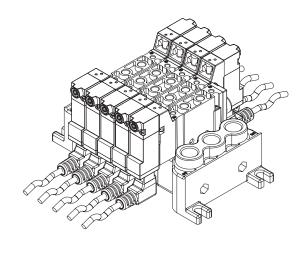
AZ4-SN003A

■ 100 Muttern M3 für Zugstangen

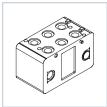

AZ4-VN0310


■ 100 Schrauben 3x10 für Zugstangen




Bektrischer Anschluss mit Aussenstecker

N = Anzahl Ventilplätze



P10SF515

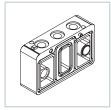
Speiseplatte rechts/links G1/8

P10SF410

Grundplatte 2 Ventilplätze 1-3-5 geschlossen

P10STR**

Modulzugstangen
** = 01, 02, 05 Plätze Verpackung je 100 Stck.

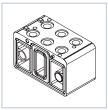

AZ4-SN003A

■ 100 Muttern M3 für Zugstangen

AZ4-VN0310

■ 100 Schrauben 3x10 für Zugstangen

P10SF300


Grundplatte
1 Ventilplatz

P10SF550

■ Trennplatte Speisedruck

P10SF400

■ Grundplatte 2 Ventilplätze

P10SF560

Abdeckplatte für nicht verwendeten Ventilplatz

P10SF310

Grundplatte 1 Ventilplatz 1-3-5 geschlossen

P10SF570

Zwischenspeiseplatte für Version mit Gewind eans chluss

P15F-P15D

OMPACT 15 mm Gewindeanschlüsse G 1/8
15 mm Gewindeanschlüsse G 1/8 für Stecker 15 mm

TECHNISCHE EIGENSCHAFTEN

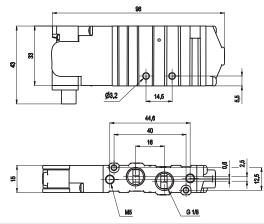
Umgebungstemperatur		-5°÷ 50°
Temperatur Betriebsmedium		50° C max
Betriebsmedium	gefilterte, nicht entfeuchtete Druckluft 10 μm, mit ode	er ohne Schmierung
Schaltsystem		Schieber
Funktionen		5/2 -5/3-3/2 + 3/2
Betriebsdruck	elektrische	Betätigung bis 9 bar
	pneumatische B	etätigung bis 10 bar
Betätigung	elektropneumatisch indirek	t oder pneumatisch
Rückstellung	mechanische Feder, pneumo	mechanische Feder
Anschlüsse		G 1/8
Nenndurchfluss (NI/min)	5/2	800
	5/3	720
	3/2+3/2	720

KONSTRUKTIONS - MERKMALE

Ventilkörper	Zamak
Dichtungen	Nitrilgummi
Grundplatte	selbstlöschender Technopolymer
Betätiger	selbstlöschender Technopolymer
Schieber	Aluminium

ELEKTRISCHE DATEN

Pilotventil	NANO B10
Spannung	24 VDC (± 10%)
Stromaufnahme	beim Anlauf 5,5 W (25 ms), Erhaltung 0,32 W
Schutzklasse	IP65



Einseitiger Impuls

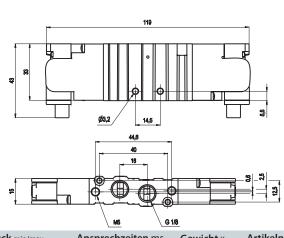
5/2

P15F

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 12 12 12 12 12 14 15 3 3 12 12 12 12 12 12 12 12 12 12 12 12 12	elektrisch verstärkt	pneumomechan. Feder	1,9÷9	15	24	0,138	P15F24024

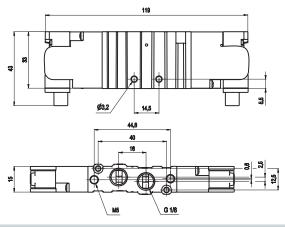
Einseitiger Impuls

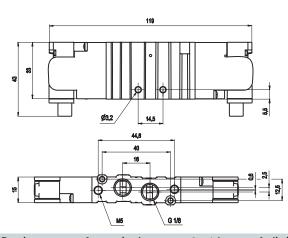
5/2


8		96		5.5 2.0
9 4		44.8	3	12.5
ck min/max	Anspre	chzeiten ms	Gewicht Ka	Artike

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 12 12	elektrisch verstärkt	mechanische Feder	2÷9	12	21	0,138	P15F24124

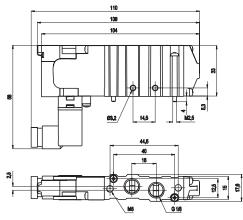
Beidseitiger Impuls


5/2


:	Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	zeiten ms	Gewicht Kg	Artikelnr.
					Err.	Aberr.		
14	51 3	elektrisch verstärkt	elektrisch verstärkt	0,7÷9	11	11	0,158	P15F24424

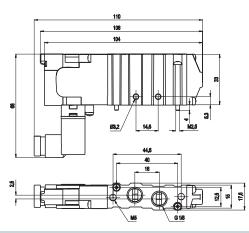
Symbol	Betätigung	Rückstellung	Druck min/max	Ansprec	nzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
GESCHLOSSENE Mittel	stellung						
14 4 2 12 12 5 1 3	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15F34424
OFFENE Mittelstellung							
14 W 12 T 12 T 12 T 12	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15F44424
Mittelstellung unter DR	UCK						
14 W 12 T T T T T T T T T T T T T T T T T T	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15F54424

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
3/2 NC+3/2 NC							
4 53 2 2	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15F64424
3/2 NC+3/2 NO							
14 12 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15F74424
3/2 NO+3/2 NO							
14 12 12 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15F84424



Einseitiger Impuls

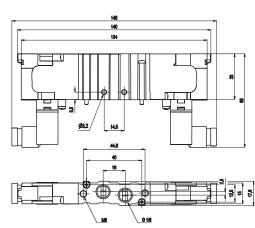
5/2


P15D

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 4 2 12 12 5 3 W	elektrisch verstärkt	pneumomech. Feder	1,9÷9	15	24	0,142	P15D24024

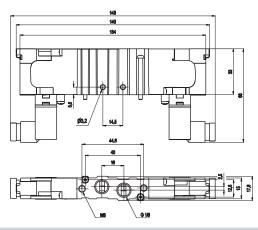
Einseitiger Impuls

5/2

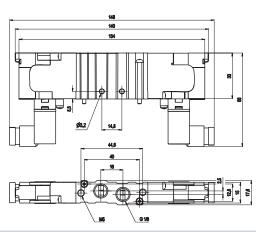


Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	zeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 - 12 12	elektrisch verstärkt	mechanische Feder	2÷9	12	21	0,142	P15D24124

Beidseitiger Impuls

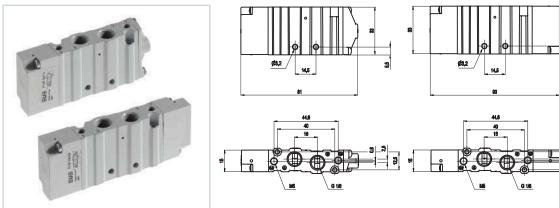

5/2

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms Err. Aberr.	Gewicht Kg	Artikelnr.
14 12 12 12	elektrisch verstärkt	elektrisch verstärkt	0,7÷9	16 16	0,166	P15D24424

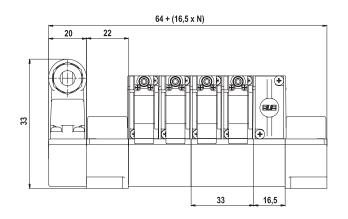


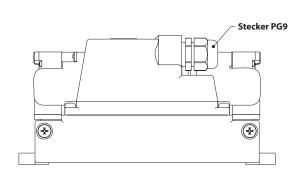
P15D

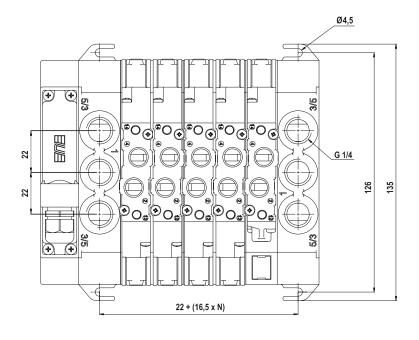
Symbol	Betätigung	Rückstellung	Druck min/max	Ansprecl	nzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
GESCHLOSSENE Mittels	stellung						
14 4 2 12 12 12 12 12 15 1 3 12	elektrisch	elektrisch	1,6÷9	11	35	0,166	P15D34424
OFFENE Mittelstellung							
14 W 12 T 12	elektrisch	elektrisch	1,6÷9	11	35	0,166	P15D44424
Mittelstellung unter DR	UCK						
14 W 12 T T T T T T T T T T T T T T T T T T	elektrisch	elektrisch	1,6÷9	11	35	0,166	P15D54424



Symbol	Betätigung	Rückstellung	Druck min/max	Ansprec	hzeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
3/2 NC+3/2 NC							
14 12 12 12 14 15 3 14 12 2 2 2 15 3 14 2 2	elektrisch	elektrisch	1,5÷9	14	16	0,166	P15D64424
3/2 NC+3/2 NO							
14 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	elektrisch	elektrisch	1,5÷9	14	16	0,166	P15D74424
3/2 NO+3/2 NO							
14 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	elektrisch	elektrisch	1,5÷9	14	16	0,166	P15D84424


5/3




			<u>M5</u> <u>G 189</u>			<u>MS</u> <u>G18</u>	
Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	zeiten ms Aberr.	Gewicht Kg	Artikelnr.
EINSEITIGER IMPULS							
14 12 12 12 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	pneumatisch	pneumomechan. Feder	1,9÷10	11	15	0,127	P15F230
EINSEITIGER IMPULS							
14 2 12	pneumatisch	mechanische Feder	2÷10	10	14	0,127	P15F231
BEIDSEITIGER IMPULS							
14 2 12 51 3	pneumatisch	pneumatisch	0,7÷10	10	10	0,132	P15F233
GESCHLOSSENE Mittel	lstellung						
2 4 14 M 2 12 3 1 5	pneumatisch	pneumatisch	1,6÷10	9	21	0,132	P15F333
OFFENE Mittelstellung							
14 M 12 3 1 5	pneumatisch	pneumatisch	1,6÷10	9	21	0,132	P15F433
Mittelstellung unter DF	RUCK						
14 M 12 3 1 5	pneumatisch	pneumatisch	1,6÷10	9	21	0,132	P15F533
3/2 NC+3/2 NC							
4 53 2 2	pneumatisch	pneumatisch	1,3÷10	10	14	0,132	P15F633
3/2 NC+3/2 NO							
\$\frac{14}{53} \frac{12}{53} \frac{1}{53} \f	pneumatisch	pneumatisch	1,3÷10	10	14	0,132	P15F733
3/2 NO+3/2 NO							
14 12 4 15 3 H 2	pneumatisch	pneumatisch	1,3÷10	10	14	0,132	P15F833

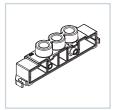
Integrierte elektrische Verbindung

N = Anzahl Ventilplätze

P15SF500

Speiseplatte G1/4 links für TIM Modul

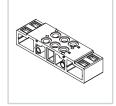
TIM1524


■ Verbindungsmodul 25-polig Typ D-sub

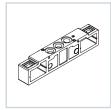
TIM1536


Verbindungsmodul 37-polig Kontaktstift Typ D-sub

P15SF505


■ Speiseplatte G1/4 rechts

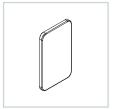
P15SF100


Grundplatte 1 Ventilplatz

P15SF200

Grundplatte 2 Ventilplätze

P15SF110


Grundplatte 1 Ventilplatz 1-3-5 geschlossen

P15SF210

Grundplatte 2 Ventilplätze 1-3-5 geschlossen

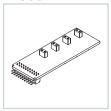
P15SF550

■ Trennplatte für Speisedruck

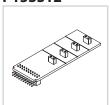
P15SF560

Abdeckplatte für nicht verwendeten Ventilplatz

P15SF570


Zwischenspeiseplatte für Version mit Gewindeanschluss

P15STR**


Modulzugstangen ** = 01, 02, 05 Plätze Verpackung je 100 Stck.

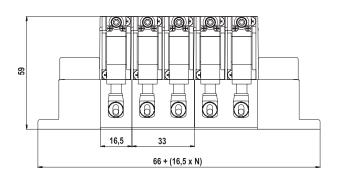
P15SS14**

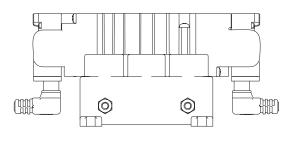
Busverbindungskarte Seite 14 ** = 04, 06, 08, 10, 12 Plätze

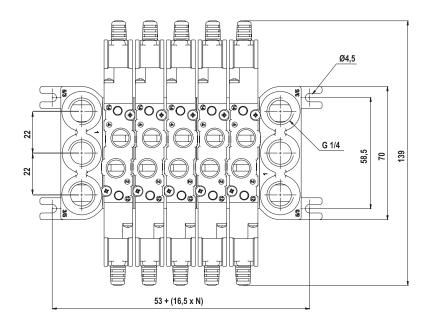
P15SS12**

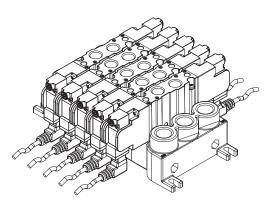
Busverbindungskarte Seite 12 ** = 04, 06, 08, 10, 12 Plätze

■ 100 Muttern M4 für Zugstangen


AZ4-VN0414


AZ4-SN004A

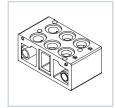

■ 100 Schrauben 4x14 für Zugstangen


Bektrische Verbindung mit Aussenstecker

N = Anzahl Ventilplätze



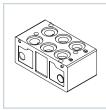
P15SF515


Speiseplatte rechts/links G1/4

P15SF300

Grundplatte
1 Ventilplatz

P15SF400


Grundplatte 2 Ventilplätze

P15SF310

■ Grundplatte 1 Ventilplatz 1-3-5 geschlossen

P15SF410

Grundplatte 2 Ventilplätze 1-3-5 geschlossen

P15SF550

■ Trennplatte Speisedruck

P15SF560

Abdeckplatte für nicht verwendeten Ventilplatz

P15SF570

Zwischenspeiseplatte für Version mit Gewindeanschluss

P15STR**

Modulzugstangen
** = 01, 02, 05 Plätze Verpackung je 100 Stck.

AZ4-SN004A

■ 100 Muttern M4 für Zugstangen

AZ4-VN0310

■ 100 Schrauben 4x14 für Zugstangen

P10B

COMPACT 10 mm für Grundplattenmontage

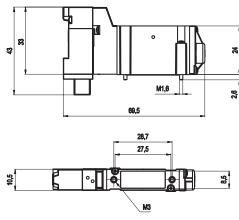
TECHNISCHE EIGENSCHAFTEN

Umgebungstemperatur		-5°÷ 50°
Temperatur Betriebsmedium		50° C max
Betriebsmedium	gefilterte, nicht entfeuchtete Druckluft 10 μm, mit ode	er ohne Schmierung
Schaltsystem		Schieber
Funktionen		5/2 -5/3-3/2 + 3/2
Betriebsdruck	elektrische l	Betätigung bis 9 bar
	pneumatische B	etätigung bis 10 bar
Betätigung	elektropneumatisch indirek	t oder pneumatisch
Rückstellung	mechanische Feder, pneumo	mechanische Feder
Grundplattenanschlüsse		ø4 - M5 - M7
Nenndurchfluss (NI/min)	5/2	310
	5/3	230
	3/2+3/2	250

KONSTRUKTIONS - MERKMALE

Ventilkörper	Zamak
Dichtungen	Nitrilgummi
Grundplatte	selbstlöschender Technopolymer
Betätiger	selbstlöschender Technopolymer
Schieber	Aluminium

ELEKTRISCHE DATEN


Pilotventil	NANO B10
Spannung	24 VDC (± 10%)
Stromaufnahme	beim Anlauf 5,5 W (25 ms), Erhaltung 0,32 W
Schutzklasse	IP65

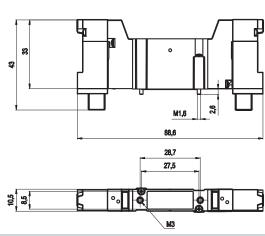
Einseitiger Impuls

5/2

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 12 12 12 12 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	elektrisch verstärkt	pneumomechan. Feder	1,5÷9	12	20	0,054	P10B24024

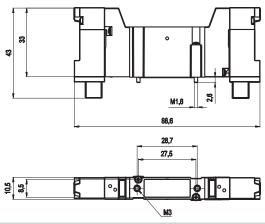
Einseitiger Impuls

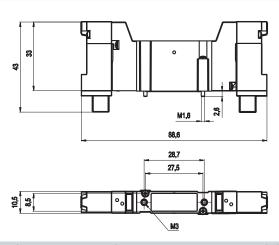
5/2


33		8
	M1,8	2,6
	69,5	
	28,7	
50		80
	M3	

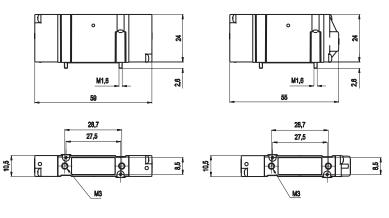
Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	Ansprechzeiten ms		Artikelnr.
				Err.	Aberr.		
14 12 12	elektrisch verstärkt	mechanische Feder	1,9÷9	10	21	0,054	P10B24124

Beidseitiger Impuls


5/2


Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	Ansprechzeiten ms		Artikelnr.
				Err.	Aberr.		
14 H 12 12 51 3	elektrisch verstärkt	elektrisch verstärkt	0,7÷9	10	10	0,069	P10B24424

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
GESCHLOSSENE Mittel	stellung						
14 W 4 2 W 5 1 3	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10B34424
OFFENE Mittelstellung							
14 W 4 2 W 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10B44424
Mittelstellung unter DR	UCK						
14 W 4 2 W 5 1 3 S 1 3	elektrisch	elektrisch	1,5÷9	11	22	0,069	P10B54424



Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	Ansprechzeiten ms		Artikelnr.
				Err.	Aberr.		
3/2 NC+3/2 NC							
14 12 12 12 14 15 3 14 12 2 2 2 15 3 14 2 2	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10B64424
3/2 NC+3/2 NO							
14 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10B74424
3/2 NO+3/2 NO							
14 12 14 15 3 1 2 2	elektrisch	elektrisch	1,3÷9	9	14	0,069	P10B84424

5/3

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
EINSEITIGER IMPULS							
14 2 12	pneumatisch	pneumomechan.	1,5÷9	8	14	0,042	P10B230

EINSEITIGER IMPULS

EINSEITIGER IMPULS

Preder

Feder

1,9÷9

7

16

0,042

P10B231

Feder

Feder

Preder

Feder

Feder

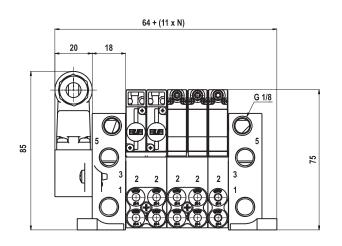
Feder

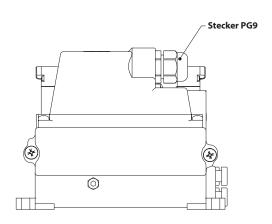
P10B231

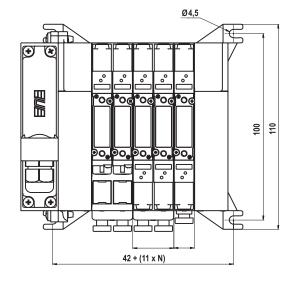
Feder

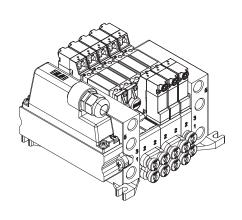
pneumatisch pneumatisch 0,6÷9 6 6 0,044 P10B233

GESCHLOSSENE mittelstellung 7 20 0,044 P10B333 pneumatisch pneumatisch 1,5÷9 **OFFENE** mittelstellung 7 pneumatisch pneumatisch 1,5÷9 20 0,044 P10B433 unter DRUCK mittelstellung

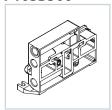

14 12 pneumatisch pneumatisch 1,5÷9 7 20 0,044 P10B533


3/2 NC+3/2 NC							
y 14 12 y 5 3 1 1 2 y 4 1 5 3 1 1 2 y	pneumatisch	pneumatisch	1,3÷9	8	14	0,044	P10B633
3/2 NC+3/2 NO							
↓ 14 12 ↓ 4 → 5 3 3 → 2	pneumatisch	pneumatisch	1,3÷9	8	14	0,044	P10B733
3/2 NO+3/2 NO							
† 14 12 † 4 153 1 1 2 1 2 2 2 1 3 1 3 2 2 1 3 1 3 2 1 3 1 3	pneumatisch	pneumatisch	1,3÷9	8	14	0,044	P10B833




Integrierte elektrische Verbindung

N = Anzahl Ventilplätze



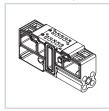
P10SB500

Speiseplatte G1/8 für TIM Modul

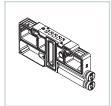
TIM1024

Verbindungsmodul 25-polig Kontaktstift Typ D-sub

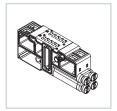
P10SB505


Speiseplatte G1/8 rechts

P10SB100/107


Grundplatte
1 Ventilplatz
seitliche Ausgänge M5, M7

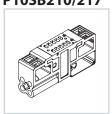
P10SB200/207


Grundplatte
2 Ventilplätze
seitliche Ausgänge M5, M7

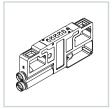
P10SB304

■ Grundplatte 1 Ventilplatz seitliche Ausgänge mit Schnellsteckanschlüssen für Rohr 4

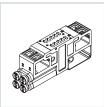
P10SB404


Grundplatte 2 Ventilplätze seitliche Ausgänge mit Schnellsteckanschlüssen für Rohr 4

P10SB110/117


■ Grundplatte 1 Ventilplatz seitliche Ausgänge M5, M7 1-3-5 geschlossen

P10SB210/217


■ Grundplatte 2 Ventilplätze seitliche Ausgänge M5, M7 1-3-5 geschlossen

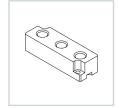
P10SB314

Grundplatte 1 Ventilplatz seitliche Ausgänge mit Schnellsteckanschlüssen für Rohr 4, 1-3-5 geschlossen

P10SB414

■ Grundplatte 2 Ventilplätze seitliche Ausgänge mit Schnellsteckanschlüssen für Rohr 4, 1-3-5 geschlossen

P10SB550


■ Trennplatte Speisedruck

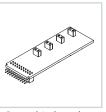
P10SB560

Abdeckplatte für nicht verwendeten Ventilplatz

P10SB570

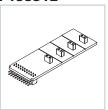
Zwischenspeiseplatte für Grundplatte

P10STR**



Modulzugstangen

** = 01, 02, 05 Plätze


Verpackung je 100 Stck.

P15SS14**

■ Busverbindungskarte Seite 14 ** = 04, 06, 08, 10, 12 Plätze

P15SS12**

Busverbindungskarte Seite 12 ** = 04, 06, 08, 10, 12 Plätze

AZ4-SN003A

■ 100 Muttern M3 für Zugstangen

AZ4-VN0310

■ 100 Schrauben 3x10 für Zugstangen

P15B

COMPACT 15 mm für Grundplattenmontage

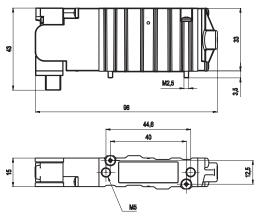
TECHNISCHE EIGENSCHAFTEN

Umgebungstemperatur			-	5°÷ 50°		
Temperatur Betriebsmedium			50	°C max		
Betriebsmedium	gefilterte, nicht entfeuchtete Druckluft 10 μm,	mit ode	er ohne Schm	nierung		
Schaltsystem			S	chieber		
Funktionen			5/2 -5/3-3/	2 + 3/2		
Betriebsdruck elektrische Betätigung b						
	pneumat	ische B	etätigung bis	s 10 bar		
Betätigung	elektropneumatisch	indirek	t oder pneur	matisch		
Rückstellung	mechanische Feder, پ	oneumo	mechanisch	e Feder		
Grundplattenanschlüsse		ø4	ø6	ø8		
Nenndurchfluss (NI/min)	5/2	200	440	800		
	5/3	200	440	620		
	3/2+3/2	200	440	750		

KONSTRUKTIONS - MERKMALE

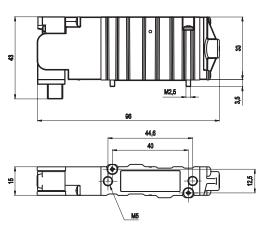
Ventilkörper	Zamak
Dichtungen	Nitrilgummi
Grundplatte	selbstlöschender Technopolymer
Betätiger	selbstlöschender Technopolymer
Schieber	Aluminium

ELEKTRISCHE DATEN


Pilotventil	NANO B10
Spannung	24 VDC (± 10%)
Stromaufnahme	beim Anlauf 5,5 W (25 ms), Erhaltung 0,32 WIP65
Schutzklasse	

Einseitiger Impuls

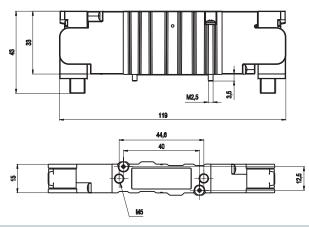
5/2



Symbol	Betätigung	Rückstellung	Druck min/max	Ansprech	Ansprechzeiten ms		Artikelnr.
				Err.	Aberr.		
14 12 12	elektrisch verstärkt	pneumomechan. Feder	1,9÷9	15	24	0,138	P15B24024

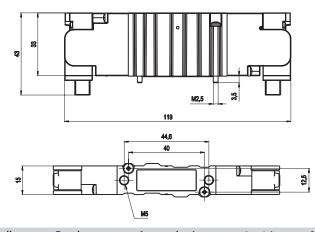
Einseitiger Impuls

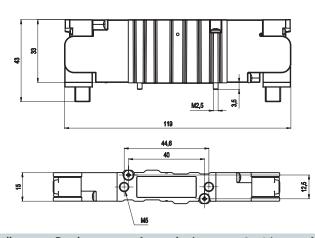
5/2



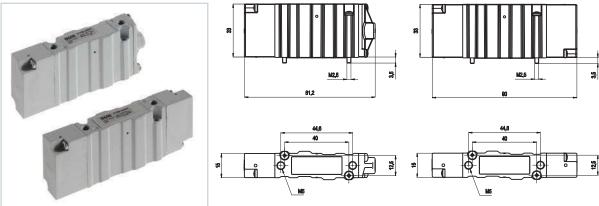
Symbol	Betätigung	Rückstellung	Druck min/max	ck min/max Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 - 12	elektrisch verstärkt	mechanische Feder	2÷9	12	21	0,138	P15B24124

Beidseitiger Impuls


5/2


Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechz	eiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
14 2 12 12	elektrisch verstärkt	elektrisch verstärkt	0,7÷9	11	11	0,158	P15B24424

Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.			
				Err.	Aberr.					
GESCHLOSSENE Mittelstellung										
14 4 2 W T T T T T T T T T T T T T T T T T T	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15B34424			
OFFENE Mittelstellung										
14 W 4 2 W 5 1 3	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15B44424			
Mittelstellung unter DR	Mittelstellung unter DRUCK									
14 W 4 2 W 5 1 3 5 1 3	elektrisch	elektrisch	1,6÷9	11	35	0,158	P15B54424			



Symbol	Betätigung	Rückstellung	Druck min/max	Ansprechzeiten ms		Gewicht Kg	Artikelnr.
				Err.	Aberr.		
3/2 NC+3/2 NC							
4 53 2	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15B64424
3/2 NC+3/2 NO							
14 12 15 3 1 2 2	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15B74424
3/2 NO+3/2 NO							
14 12 12 12 14 15 3 17 2 2 15 15 15 15 15 15 15 15 15 15 15 15 15	elektrisch	elektrisch	1,5÷9	14	16	0,158	P15B84424

5/3

3/2+3/2

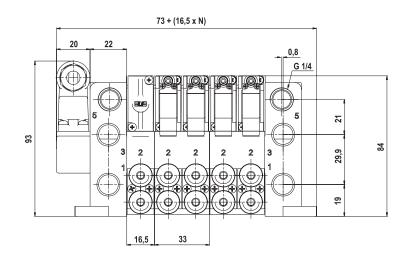
			M5			<u>M5</u>	
Symbol	Betätigung	Rückstellung	Druck min/max		zeiten ms	Gewicht Kg	Artikelnr.
				Err.	Aberr.		
EINSEITIGER IMPULS							
14 2 12 12	pneumatisch	pneumomechan Feder	1,9÷9	11	15	0,127	P15B230
EINSEITIGER IMPULS							
14 2 12	pneumatisch	mechanische Feder	2÷9	10	14	0,127	P15B231
BEIDSEITIGER IMPULS							
14 2 12 12 51 3	pneumatisch	pneumatisch	0,7÷9	10	10	0,132	P15B233
GESCHLOSSENE Mittel	stellung						
2 4 14 M 2 12 3 1 5	pneumatisch	pneumatisch	1,6÷9	9	21	0,132	P15B333
OFFENE Mittelstellung							
14 M 12 3 1 5	pneumatisch	pneumatisch	1,6÷9	9	21	0,132	P15B433
Mittelstellung unter DR	RUCK						
14 M 12 3 1 5	pneumatisch	pneumatisch	1,6÷9	9	21	0,132	P15B533
3/2 NC+3/2 NC							
√ 14 12 √ 4 → 5 3 3 1 2 2	pneumatisch	pneumatisch	1,3÷9	10	14	0,132	P15B633
3/2 NC+3/2 NO							
4 53 2	pneumatisch	pneumatisch	1,3÷9	10	14	0,132	P15B733
3/2 NO+3/2 NO							
14 12							

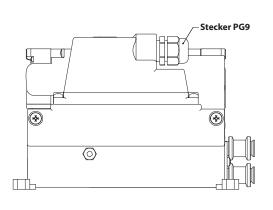
pneumatisch

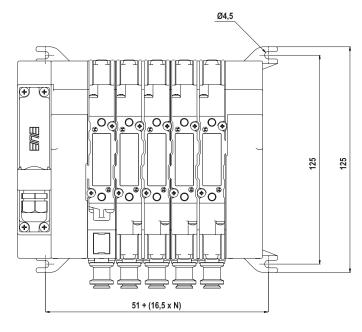
pneumatisch

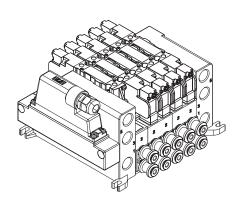
10

1,3÷9

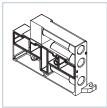

14


0,132


P15B833


Integrierte elektrische Verbindung

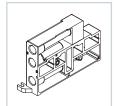
N = Anzahl Ventilplätze



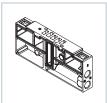
P15SB500

Speiseplatte G1/4 für TIM Modul

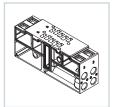
TIM1524


■ Verbindungsmodul 25-polig Kontaktstift Typ D-sub

TIM1536


■ Verbindungsmodul 37-polig Kontaktstift Typ D-sub

P15SB505


■ Speiseplatte rechts G1/4

P15SB100

Grundplatte 1 Ventilplatz seitliche Ausgänge G 1/8 integrierte Version

P15SB200

Grundplatte 2 Ventilplätze seitliche Ausgänge G 1/8

P15SB300

Grundplatte 1 Ventilplatz seitliche Ausgänge für Schnellsteckanschlüsse integrierte Version

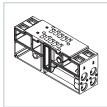
P15SB400

Grundplatte 2 Ventilplätze seitliche Ausgänge für Schnellsteckanschlüsse integrierte Version

P15SB110

Grundplatte 1 Ventilplatz seitliche Ausgänge G 1/8 integrierte Version 1-3-5 geschlossen

P15SB210


■ Grundplatte 2 Ventilplätze seitliche Ausgänge G 1/8 integrierte Version 1-3-5 geschlossen

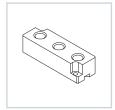
P15SB310

Grundplatte 1 Ventilplatz seitliche Ausgänge für Schnellsteckanschlüsse 1-3-5 geschlossen

P15SB410

Grundplatte 2 Ventilplätze seitliche Ausgänge für Schnellsteckanschlüsse 1-3-5 geschlossen

P15SB550


Trennplatte Speisedruck

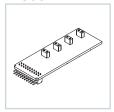
P15SB560

Abdeckplatte für nicht verwendeten Ventilplatz

P15SB570

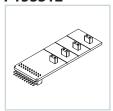
Zwischenspeiseplatte für Grundplatte

P15STR**



Modulzugstangen

** = 01, 02, 05 Plätze


Verpackung je 100 Stck.

P15SS14**

Busverbindungskarte Seite 14 ** = 04, 06, 08, 10, 12 Plätze

P15SS12**

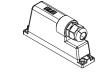
Busverbindungskarte Seite 12 ** = 04, 06, 08, 10, 12 Plätze

GZR

Verschraubung GZR-V10004 GZR-V10006 GZR-V10008

AZ4-SN004A

■ 100 Muttern M4 für Zugstangen


AZ4-VN0414

■ Schrauben 4x14 für Zugstangen

D-535U40300 D-535U40500 TSCFN24S000 TSCFN36S000 AM-5109

TSCFN24S0300 TSCFN32S0300 TSCFN24S0500 TSCFN32S0500 TSCFN24S1000 TSCFN32S1000

Steckerhülse 25/37-polig

Typ D-sub mit Kabel 3-5-10 m

Einfacher Stecker mit Kabel 3-5 m

Steckerhülse 25/37-polig Typ D-sub ohne Kabel

Stecker 15 mm

➤ Farbenkennzeichnung nach Standard DIN 47100

Steckerhülse **D-SUB 25-polig** für Verbindung **12+12 Spulen**

Steckerhülse **D-SUB 37-polig** für Verbindung **16+16 Spulen**

PIN N.	Farbe	Spule	Betätigung Seite	Ventil N.
1	Weiss	1	14	1
2	Braun	2	12	1
3	Grün	3	14	2
4	Gelb	4	12	2
5	Grau	5	14	3
6	Rosa	6	12	3
7	Blau	7	14	4
8	Rot	8	12	4
9	Schwarz	9	14	5
10	Violett	10	12	5
11	Grau-rosa	11	14	6
12	Rot-blau	12	12	6
13	Weiss-grün	13	14	7
14	Braun-grün	14	12	7
15	Weiss-gelb	15	14	8
16	Gelb-braun	16	12	8
17	Weiss-grau	17	14	9
18	Grau-braun	18	12	9
19	Weiss-rosa	19	14	10
20	Rosa-braun	20	12	10
21	Weiss-blau	21	14	11
22	Braun-blau	22	12	11
23	Weiss-rot	23	14	12
24	Braun-rot Braun-schwarz	gemeinsam niedrig	-	-
	Schirm			
25	Weiss-schwarz	24	12	12

PIN N.	Farbe	Spule	Betätigung Seite	Ventil N.
1	Weiss	1	14	1
2	Braun	2	12	1
3	Grün	3	14	2
4	Gelb	4	12	2
5	Grau	5	14	3
6	Rosa	6	12	3
7	Blau	7	14	4
8	Rot	8	12	4
9	Schwarz	9	14	5
10	Violett	10	12	5
11	Grau-rosa	11	14	6
12	Rot-blau	12	12	6
13	Weiss-grün	13	14	7
14	Braun-grün	14	12	7
15	Weiss-gelb	15	14	8
16	Gelb-braun	16	12	8
17	Weiss-grau	17	14	9
18	Grau-braun	18	12	9
19	Weiss-rosa	19	14	10
20	Rosa-braun	20	12	10
21	Weiss-blau	21	14	11
22	Braun-blau	22	12	11
23	Weiss-rot	23	14	12
24	Braun-rot	24	12	12
25	Weiss-schwarz	25	14	12
26	Braun-schwarz	26	12	13
27	Grau-grün	27	14	14
28	Gelb-grau	28	12	14
29	Rosa-grün	29	14	15
30	Gelb-rosa	30	12	15
31	Grün-blau	31	14	16
32	Gelb-blau	32	12	16
33	-	unbenutzt	-	-
34	-	unbenutzt	-	-
35	-	unbenutzt	-	-
36	Gelb-schwarz	gemeinsam	-	-
37	Gelb-rot Schirm	gemeinsam niedrig	-	-

Die Serie COMPACT P10/P15 wird serienmässig mit Pilotventil NANO_B10 mit niedriger Stromaufnahme geliefert

- Niedrige Standard-Stromaufnahme: 0,32 W
- Hoher Durchfluss: 38 NI/min
- Schnelle Ansprechzeiten: 3ms
- Standard-Schnittstellen ISO 15218
- Version 3/2 NC monostabil und bistabil

>> Für alle weiteren Informationen den entsprechenden technischen Katalog bei unserer Verkaufsabteilung anfordern

HZE_Wartungseinheiten

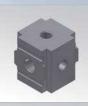
- → Modularer Aufbau
- → Einfaches Montage
- ⊢ HZE0: G1/4" (40 mm)
 HZE1: G3/8" (63 mm)

 ⊢ HZE2: G1/2" (80 mm)

HZE__Wartungseinheiten

Eingebauter Manometer (Standard)

Manometer-Gewindeanschluss Standard (freigestellt für Grösse 0)


Progressive Anfahrventile

Druckaufbauventile

Manuelle Einschaltventile

Anschlussblock

Befestigungszubehör

manuelle/halbautomatische Entleerung

automatische Entleerung

Grösse 0

- **1**_ eingebauter Manometer Standard
- **2**_T-förmiger Befestigungswinkel
- 3_ manuelle Entleerung
- 7_ Metallgewindeanschluss
- **8**_ Befestigungsmutter Standard
- **9**_ durchsichtige Schaudom und integrierte Regelung

_Grösse 1 - 2

- **1**_ eingebauter Manometer Standard
- ${\bf 2}_{\sf T-} f\"{o}rmiger\ {\sf Be} festigungswinkel$
- 3_ manuelle Entleerung
- **4**_ Behälter

- **5**_ Sicherheitssystem
- **6**_ Metallkörper
- $\textbf{8}_ \text{ Befestigungs mutter Standard}$
- **9**_ durchsichtige Schaudom und integrierte Regelung

	ТҮР	GRÖSSE	ANSCHLUSS	DRUCKEIN	STELLUNG	VERRIEGELBARER REGLER		ATIONS- RAD	GESCHÜTZTER BEHÄLTER	KONDE	NSWASSER	ABLASS	MANO	METER
				0 ÷ 10 bar	andere		5 μm	40 μm		manuell	halb- automatisch	automatisch	integriert	G1/8 Anschluss
		0	G1/4"		0	_		0	_		0	_		0
D	FR+L	1	G3/8"		0	0		0	-		0	0		
		2	G1/2"		0	0		0	-		0	0		
		0	G1/4"		0	_		0	_		0	_		0
c	F+R+L	1	G3/8"		0	0		0	-		0	0		
		2	G1/2"		0	0		0	-		0	0		
		0	G1/4"		0	_		0	_		0	_		0
В	FR	1	G3/8"		0	0		0	=		0	0		
		2	G1/2"		0	0		0	-		0	0		
		0	G1/4"	_	_	_		0	_		0	_	_	_
F	F	1	G3/8"	_	_	_		0	=		0	0	_	_
		2	G1/2"	_	_	_		0			0	0	_	_
		0	G1/4"		0	_	_	_	_		0	_		0
R	R	1	G3/8"		0	0	_	_	=		0	0		
		2	G1/2"		0	0	_	_			0	0		
		0	G1/4"	_	_	_	_	_	_	_	_	_	_	_
L	L	1	G3/8"	_	_	_	_	_	•	_	_	_	_	_
		2	G1/2"	_	_	_	_	_	•			_		_

Wartungseinheiten

neue Serie mit 3 Grössen

- **HZE0** G1/4" (40 mm)
- **HZE1** G3/8" (63 mm)
- HZE2 G1/2" (80 mm)

Standardkonfigurationen

- Filter
- Regler
- Öler
- Filterregler (FR)
- Filterregler + Öler (FR+L)
- Filter + Regler + Öler (F+R+L)

Eingebauter viereckiger Manometer Standard (wenn vorgesehen)

TECHNISCHE EIGENSCHAFTEN

Umgebungstemperatur	5 ÷ 60 °C
Betriebsmedium	Druckluft
Betriebsdruck	0 ÷ 10 bar
Max. Druck	12 bar
Grösse	0 - 1 - 2

KONSTRUKTIONSMERKMALE

Körper	Tecnopolymer mit Metallgewindeanschlüssen (Grösse 0)
	Aluminium-Druckgußlegierung (Grösse 1 - 2)
Knopf	Technopolymer
Befestigungsmutter	Technopolymer
Behäter	Polycarbonat
Behälterschutz	Technopolymer (Grösse 1-2)
Filterelement	Polyäthilen
Dichtungen	Nitrilgummi
Feder	Stahl
Membrangruppe	Gummi

TYPENSCHLÜSSEL

Н	Z	Е	0	В	0	8	G	М	
1		2	3	4		5	6		

1 Serie 2 Grösse 3 Modell

HZE 0 = klein (G1/4)

 $\boldsymbol{B} = Filterregler$

1 = mittlere (G3/8)2 = groß (G1/2)

C = Filter + Regler + Öler (F+R+L)

 $\mathbf{D} = \text{Filterregler} + \text{Öler} (FR+L)$

F = Filter

L = Öler $\mathbf{R} = \text{Regler}$

4 Anschluss 5 Manometer 6 Filtration

08G = G1/4 (Grösse 0)

blank = G1/8 Anschluss (auf Anfrage nur für Grösse 0) **10G** = G3/8 (Grösse 1) $\mathbf{M} = \text{eingebauter viereckiger}$

15G = G1/2 (Grösse 2) Manometer (Standard) **blank** = 5 micron (Standard)

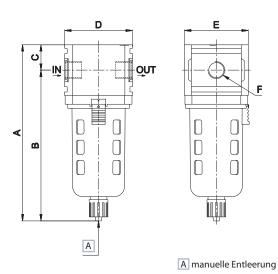
auf Anfrage = weitere Filtrationsgrade

HÆ F - Filter

Grösse	0	1	2	
Artikelnr.	HZE0F08G	HZE1F10G	HZE2F15G	
Gewindeanschluss	G1/4	G3/8	G1/2	
Filtrationsgrad (µm)	5	5	5	
Durchfluss (NI/min) (A)	1100	3500	6500	
Max. Eingangsdruck (bar-MPa-psi)	12-1-145	12-1-145	12-1-145	
Medium	Druckluft	Druckluft	Druckluft	
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60	
Kondenswasserablassvermögen (cm³)	12	45	80	
Kondenswasserablass	manuell	manuell	manuell	
Gewicht (Kg)	0,10	0,31	0,55	
Einbaulage	senkrecht	senkrecht	senkrecht	

⁽A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar - Δ p 1 bar

HZE0F08G

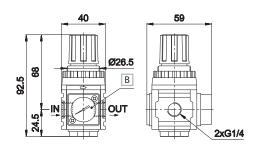


OUT 2xG1/4 124 Α A manuelle Entleerung

HZE1F10G - HZE2F15G

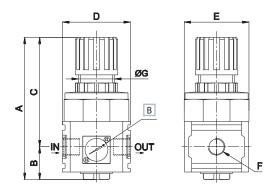
Grösse	Α	В	C	D	E	F
1	180	157	23	63	63	G3/8
2	195	172	23	80	80	G1/2

R - Regler


Grösse	0	1	2
Artikelnr.	HZE0R08GM	HZE1R10GM	HZE2R15GM
Gewindeanschluss	G1/4	G3/8	G1/2
Durchfluss (NI/min) ^(A)	1000	2100	4300
Max. Eingangsdruck (bar-MPa-psi)	12-1-145	12-1-145	12-1-145
Druckeinstellung mit relieving (bar)	0,5 ÷ 8,5	0,5 ÷ 8,5	0,5 ÷ 8,5
Manometer (Standard)	HZ9464G	HZ9464G	HZ9464G
Manometeranschluss	G1/8 ^(B)	G1/8 ^(C)	G1/8 (C)
Medium	gefilterte Luft	gefilterte Luft	gefilterte Luft
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60
Gewicht (Kg)	0,16	0,45	0,70
Einbaulage	senkrecht/waagerecht	senkrecht/waagerecht	senkrecht/waagerecht

- (A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar Δp 1 bar
- (B) = freigestellt (Manometer HZ9464G durch G1/8 Flansch HZE7Z480 zu ersetzten separat zu bestellen)
- (C) = Standard (Manometer HZ9464G durch G1/8 hinten montierte Flansch HZE7Z480 zu ersetzten)

HZE0R08GM



B **HZ9464G** Manometer Standard

HZE1R10GM - HZE2R15GM

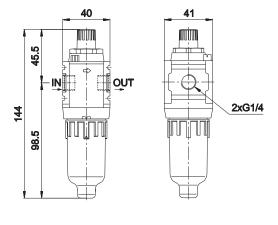
B **HZ9464G** Manometer Standard

Grösse	Α	В	С	D	E	F	G
1	136	32,5	103,5	63	63	G3/8	40
2	145	34,5	110,5	80	80	G1/2	47

> Verriegelbarer Regler Grösse 1-2

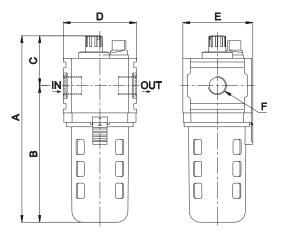
Grösse	Artikelnr.
1	HZE1RL10GM
2	HZE2RL15GM

Schloss ausgeschließlich



Grösse	0	1	2
Artikelnr.	HZE0L08G	HZE1L10G	HZE2L15G
Gewindeanschluss	G1/4	G3/8	G1/2
Durchfluss (NI/min) (A)	1400	4400	7000
Max. Eingangsdruck (bar-MPa-psi)	12-1-145	12-1-145	12-1-145
Medium	gefilterte Luft	gefilterte Luft	gefilterte Luft
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60
Behältervolumen (cm³)	20	85	170
Gewicht (Kg)	0,10	0,31	0,46
Einbaulage	senkrecht	senkrecht	senkrecht
Empfohlenes Öl	ISO VG 32	ISO VG 32	ISO VG 32
Mindestbetriebsdurchfluss (I/min)	25	30	65

(A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar - Δ p 1 bar


HZE0L08G

HZE1L10G - HZE2L15G

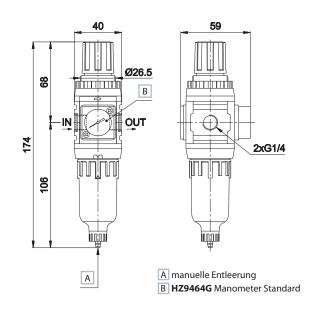
Grösse	Α	В	C	D	E	F
1	177	130	47	63	63	G3/8
2	196	148	48	80	80	G1/2

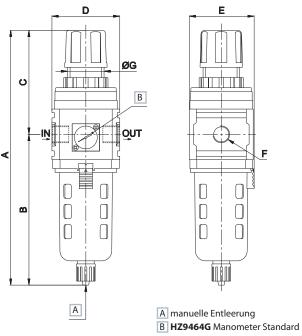
B - Filterregler

			2
Artikelnr.	HZE0B08GM	HZE1B10GM	HZE2B15GM
Gewindeanschluss	G1/4	G3/8	G1/2
Filtrationsgrad (μm)	5	5	5
Durchfluss (NI/min) (A)	1000	2300	4500
Max. Eingangsdruck (bar-MPa-psi)	12-1-145	12-1-145	12-1-145
Druckeinstellung mit relieving (bar)	0,5 ÷ 8,5	0,5 ÷ 8,5	0,5 ÷ 8,5
Manometer (Standard)	HZ9464G	HZ9464G	HZ9464G
Manometeranschluss	G1/8(B)	G1/8 ^(C)	G1/8(C)
Medium	Druckluft	Druckluft	Druckluft
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60
Kondenswasserablassvermögen (cm³)	12	45	80
Kondenswasserablass	manuell	manuell	manuell
Gewicht (Kg)	0,21	0,65	1,00
Einbaulage	senkrecht	senkrecht	senkrecht

- (A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar Δp 1 bar
- (B) = freigestellt (Manometer HZ9464G durch G1/8 Flansch HZE7Z480 zu ersetzten separat zu bestellen)
- (C) = Standard (Manometer HZ9464G durch G1/8 hinten montierte Flansch HZE7Z480 zu ersetzten)

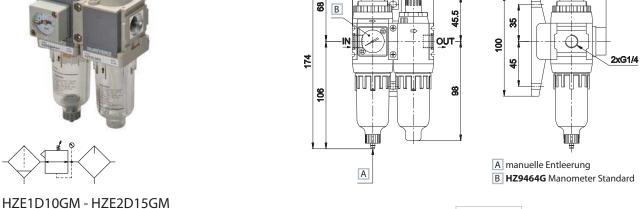
HZE0B08GM





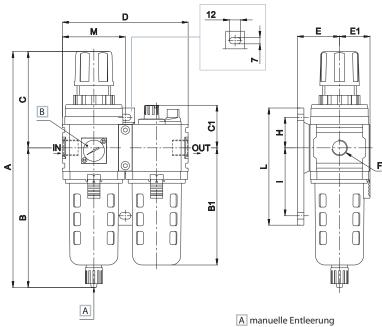
HZE1B10GM - HZE2B15GM

Grösse	Α	В	С	D	E	F	G
1	259	156	103	63	63	G3/8	40
2	280	170	110	80	80	G1/2	47



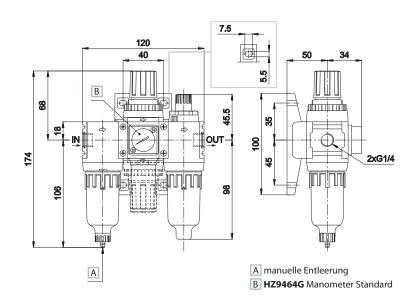
Grösse	0	1	2
Artikelnr.	HZE0D08GM	HZE1D10GM	HZE2D15GM
Gewindeanschluss	G1/4	G3/8	G1/2
Filtrationsgrad (µm)	5	5	5
Durchfluss (NI/min) (A)	900	1200	2000
Max. Eingangsdruck (bar-MPa-psi)	12-1-145	12-1-145	12-1-145
Druckeinstellung mit relieving (bar)	0,5 ÷ 8,5	0,5 ÷ 8,5	0,5 ÷ 8,5
Manometer (Standard)	HZ9464G	HZ9464G	HZ9464G
Manometeranschluss	G1/8 ^(B)	G1/8 ^(C)	G1/8 ^(C)
Medium	Druckluft	Druckluft	Druckluft
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60
Kondenswasserablassvermögen (cm³)	12	45	80
Kondenswasserablass	manuell	manuell	manuell
Gewicht (Kg)	0,33	1,05	1,55
Einbaulage	senkrecht	senkrecht	senkrecht
Empfohlenes Öl	ISO VG 32	ISO VG 32	ISO VG 32
Mindestbetriebsdurchfluss (I/min)	25	30	65

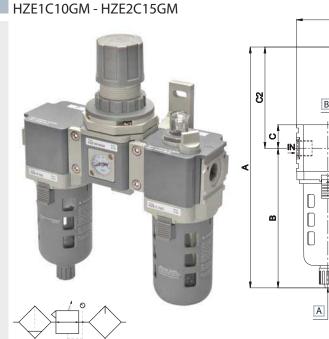
- (A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar Δp 1 bar
- (B) = freigestellt (Manometer HZ9464G durch G1/8 Flansch HZE7Z480 zu ersetzten separat zu bestellen)
- (C) = Standard (Manometer HZ9464G durch G1/8 hinten montierte Flansch HZE7Z480 zu ersetzten)

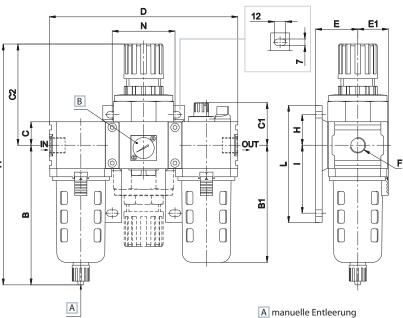

HZE0D08GM

40

7.5


5.5



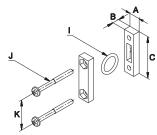

Grösse	0	1	2
Artikelnr.	HZE0C08GM	HZE1C10GM	HZE2C15GM
Gewindeanschluss	G1/4	G3/8	G1/2
Filtrationsgrad (µm)	5	5	5
Durchfluss (NI/min) (A)	900	1200	2000
Max. Eingangsdruck (bar-MPa-psi)	10-1-145	10-1-145	10-1-145
Druckeinstellung mit relieving (bar)	0,5 ÷ 8,5	0,5 ÷ 8,5	0,5 ÷ 8,5
Manometer (Standard)	HZ9464G	HZ9464G	HZ9464G
Manometeranschluss	G1/8 ^(B)	G1/8 ^(C)	G1/8 (C)
Medium	Druckluft	Druckluft	Druckluft
Temperaturbereich (°C)	5 ÷ 60	5 ÷ 60	5 ÷ 60
Kondenswasserablassvermögen (cm³)	12	45	80
Kondenswasserablass	manuell	manuell	manuell
Gewicht (Kg)	0,40	1,25	1,90
Einbaulage	senkrecht	senkrecht	senkrecht
Empfohlenes Öl	ISO VG 32	ISO VG 32	ISO VG 32
Mindestbetriebsdurchfluss (I/min)	25	30	65

- (A) = Eingangsdruck 6 bar, Ausgangsdruck 5 bar Δp 1 bar
- (B) = freigestellt (Manometer HZ9464G durch G1/8 Flansch HZE7Z480 zu ersetzten separat zu bestellen)
- (C) = Standard (Manometer HZ9464G durch G1/8 hinten montierte Flansch HZE7Z480 zu ersetzten)

HZE0C08GM

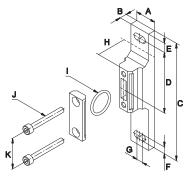
B HZ9464G Manometer Standard

Grösse	Α	В	B1	C	C1	C2	D	E	E1	F	Н	1	L	N
1	260,5	157	130	23	47	103,5	190	45	31,5	G3/8	45	60	125	63
2	282,5	172	148	23	48	110,5	240	55	40	G1/2	45	60	125	80



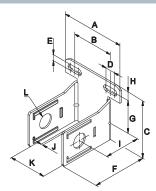
> Befestigungselemente

Montagekit mit Zwischeneinsatz


Grösse	Α	В	C	ØI	J	K	Artikelnr.
0	9,5	5,5	36	18	M3x37	26	HZE0Z200
1	15	7	44	25,7	M5x45	32	HZE1Z200
2	15	7	44	25.7	M5x45	32	HZE2Z200

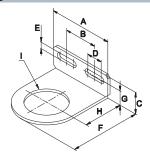
T-förmiger Befestigungswinkel mit Zwischeneinsatz

22


	D			F	1			
D	E	F	G	Н	ØI	J	K	Artikelnr.
35,5	10	5,5	4	25	18	M3x37	26	HZE0Z210
45	10	7	7	27	25,7	M5x45	32	HZE1Z210
45	10	7	7	27	25,7	M5x45	32	HZE2Z210

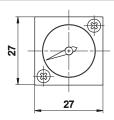
C-förmiger Befestigungswinkel

7 125 22,4 7 125



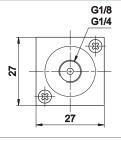
Grösse	Α	В	C	D	E	F	G	Н	- 1	J	K	ØL	Artikelnr.
0	68	44	61,5	10	6,5	60	35	8,5	40	2	40	14	HZE0Z300
1	67	34,5	76	14	7	69	45	9	45	2,3	63	25	HZE1Z300
2	84	55	93,5	14	9	102	50	11	65	2,3	80	25	HZE2Z300

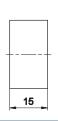
L-förmiger Befestigungswinkel (für Regler)


Grösse	Α	В	C	D	E	F	G	Н	ØI	Artikelnr.
0	68	44	24,5	10	6,5	59	16	40	26,5	HZE0Z310
1	67	34,5	26	16,5	7	76	18	45	40	HZE1Z310
2	84	55	26	16,5	7	94	18	45	47	HZE2Z310



HZ9464G

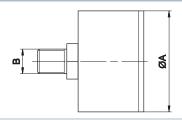



eingebauter vieleckiger Manometer Standard Grösse 0 - 1 - 2 (0 ÷ 12 bar) Schraubenkupplung: Max 0,6 Nm

HZE7Z480 HZE7Z490

Gewindeanschluss für runden Manometer Schraubenkupplung: Max 0,6 Nm

> Dichtung-Detail



Beim Ersatz des Manometers durch Gewindeanschluss, drehen Sie die Dichtung wie im Photo Nr. 1

HZ9P...

Artikelnr.	ØΑ	Ska	ala	Anschluss - B
		bar	MPa	
HZ9P401018	40	0 - 10	0 - 1	G1/8C
HZ9P501014	50	0 - 10	0 - 1	G1/4C
HZ9P631014	63	0 - 10	0 - 1	G1/4C

Gehäuse: Tecnopolymer Sichtglas: Akryl, druckmontiert

Genauigkeit: EN 837 Klasse 1,6 - 2,5. ASME B40.1 Grad B

Schutzart: IP 43

HZE7Z400 Filterelemente

Automatische Entleerung für Grösse 1 - 2
Für den Austausch wie folgt vorgesehen: Nutmutter total losschrauben und den
Schnabel des Ablasses frei machen. Druck nach oben ausöben und herausnehmen,
Austausch vornehmen und wieder blockieren

Grösse 0	Grösse 1	Grösse 2	
HZE0Z660	HZE1Z660	HZE2Z660	5 μm
HZE0Z664	HZE1Z664	HZE2Z664	40 µm

Die auf die Zylinder montierten Magnetschalter haben die Aufgabe, die Kolbenposition zu ermitteln indem sie ein elektrisches Signal auslösen, sobald sie sich dem Magnetfeld nähern, das der im Kolben integrierte Magnet erzeugt. Zwei verschiedene Technologien wurden für die Fertigung obiger angewandt: die elektrische mit Reed-Kolben, die elektronische mit Magnetwiderstand normal offen mit PNP-Ausgang; auf Anfrage mit NPN Ausgang. Die Magnetschalter mit Reed-Kolben funktionieren mit Gleichstrom und Wechselstrom; die elektronischen arbeiten dagegen nur mit Gleichstrom 30 Vdc max.

Bei beiden wird der aktive Zustand durch das Aufleuchten einer Leuchtdiode angezeigt.

		elektronisch			echanisch	55		
Eigenschaften	Тур	DF-770 3 Drähte PNP N.O.	DF-220 2 Drähte N.O.	DF-330 3 Drähte PNP N.O.	DF-440 3 Drähte PNP N.O.	3 Drähte PNP N.C. sensibel		
Nennspannung	V AC/DC	24V DC	24V AC/DC	24V AC/DC	24V AC/DC	24V AC/DC		
Betriebsspannung	V AC/DC	730V	530V	530V	530V	530V		
Max. Schaltstrom	mA	200	120	500	500	120		
Max. Schaltleistung	W/VA	6	3,6	6	6	3,6		
Max. Spannungsabfall	V AC/DC	0,7V	2,8V	0,1V	0,1V	2,8V		
Min. Magnetfeld	gauss	30	60	60	60	50		
Ansprechzeit Öffnen	ms	0,08	< 0,5	< 0,5	< 0,5	< 0,5		
Ansprechzeit Schließen	ms	0,03	< 1	< 1	< 1	< 1		
Elektrische Lebendsdauer mit	Schaltspiele	>10 ₉	>10 ₇	>10 ₇	>10,	>10,		
resistiver Last								
Zustandsanzeiger	ROT	LED	LED	LED	LED	LED		
Kabelanzahl und - querschnitt	mmq	3 x 0,14	2 x 0,14	3 x 0,14	3 x 0,14	3 x 0,14		
Elektrischer Stromkreis (Seite 4)	Тур	С	А	С	D	D		
Schutzart	DIN40050	IP65						
Verbrauchertemperatur °C -20 + 80 °C								

Zubehör

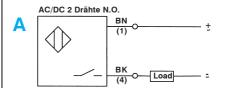
- Sensor mit Kabel 3 m	DF-770	DF-220	DF-330	DF-440	DF-520		
- Sensor mit Kabel 20 cm Steckverbinder M08	DF-770M08	DF-220M08	DF-330M08	DF-440M08	DF-520M08		
- Sensor mit Kabel 20 cm Steckverbinder M12	DF-770M12	DF-220M12	DF-330M12	DF-440M12	DF-520M12		
- Verlängerungskaberl M08 3 m 3-polig	DHF-033M08						
- Verlängerungskabel M08 5 m 3-polig	DHF-053M08						
- Verlängerungskabel M12 3 m 3-polig	DHF-033M12						
- Verlängerungskabel M12 5 m 3-plig	DHF-053M12						
- Kabelklemme	DF -001						

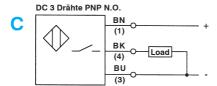
Bei Verwendung der 3-poligen Verlängerungskabel M08 und M12 mit Magnetsensoren DF-220, DF-220M08, DF-220M12 für den Anschluß hellblauen Draht ausschließen.

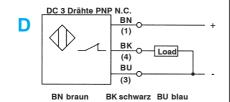
Anmerkung: bei Gleichstrom Polarität beachten. Der Zylinder darf das Schaltverhalten des Schalters nicht zeitkritsch beeinflussen. Höchstlänge des Anschlußkabels 10 m, sonst muß Filter KM-008200 eingesetzt werden. Für induktive Lasten geeignete Filter vorsehen.

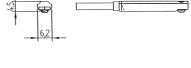
		elektronisch	el	ektromechanisch			
Eigenschaften	Тур	DH-700 3 Drähte PNP N.O.	DH-100/KM 2 Drähte N.O.	DH-200 2 Drähte N.O.	DH-500 2 Drähte N.O. sensibel		
Nennspannung	AC/DC	24V DC	-	-	-		
Betriebsspannung	AC/DC	730V	5250V	5250V	5250V		
Max. Schaltstrom	mA	200	1000	500	500		
Max Schaltleistung	W/VA	6	30	10	10		
Max. Spannungsabfall	AC/DC	0,7V	2,8V	2,8V	2,8V		
Min. Magnetfeld	gauss	30	85	85	60		
Ansprechzeit Öffnen	ms	0,08	< 0,5	< 0,5	< 0,5		
Ansprechzeit Schiießen	ms	0,03	< 1	< 1	< 1		
Elektrische Lebensdauer mit resistiver Last	Schaltspiele	>109	>107	>107	>10 ⁷		
Zustandsanzeiger	ROT	LED	LED	LED	LED		
Kabelanzahl und - querschnitt	mmq	3 x 0,25	2 x 0,25	2 x 0,25	2 x 0,25		
Elektrischer Stromkreis (Seite. 4)	Тур	С	А	А	А		
Schutzart	DIN40050	IP65					
Verbrauchertemperatur	℃	-20 +80					

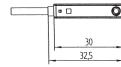
Zubehör

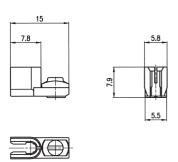

- Sensor mit Kabel 3 m	PNP DH-700	DH-100	DH-200	DH-500			
- Sensor mit Kabel 3 m	NPN DH-700A	-	-	-			
- Sensor mit Kabel 5 m	PNP DH-700L5	DH-100L5	DH-200L5	DH-500L5			
- Sensor mit Kabel 10 m	PNP DH-700L10	DH-100L10	DH-200L10	DH-500L10			
- Sensor mit Kabel 20 cm Steckverbinder M08 60V	PNP DH-700M08	-	DH-200M08	DH-500M08			
- Sensor mit Kabel 20 cm Steckverbinder M12	PNP DH-700M12	-	DH-200M12	DH-500M12			
- Verlängerungskabel M08 5, 3-polig, 60V max.	DHF-033M08						
- Verlängerungskabel M08 5, 3-polig, 60V max.	DHF-053M08						
- Verlängerungskabel M12 5, 3-polig	DHF-033M12						
- Verlängerungskabel M15 5, 3-polig		DHF	-053M12				


Bei Verwendung der Verlängerungskabel M08 und M12, 3-polig, mit Magnetsensoren DH-100/KM-..., DH-200, DH-500, für den Anschluß hellblauen Draht ausschließen.

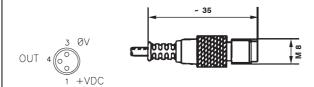

Anmerkung: bei Gleichstrom Polarität beachten. Der Zylinder darf das Schaltverhalten des Schalters nicht zeitkritsch beeinflussen. Höchstlänge des Anschlußkabels 10 m, sonst muß Filter KM-008200 eingesetzt werden. Für induktive Lasten geeignete Filter vorsehen. Das Verlängerungskabel kann mit Länge nach Wunsch geliefert werden. Für die Version ohne LED - Anzeiger Suffix E hinzufügen.

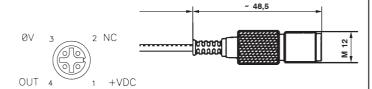

Elektrische Stromkreise



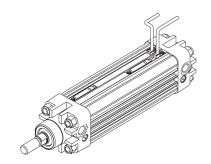


Maximale Abmessungen DF-... mit im hieferumfang enthaltener Kabelklemme

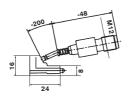


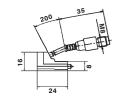



Kabelklemme DF-001

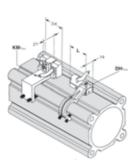


Steckverbinder M08, M12



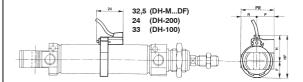


Maximale Abmessungen DH-...


Korrekte Befestigung

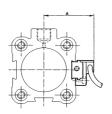
Der Magnetsensor wird am Zylinder mit der speziellen Halterung befestigt oder einfach in die Zylindernut eingelassen.

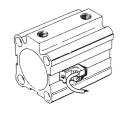
Zylinder ISO Serie K



Zyl. Ø	A-B	С	D	Artikelnr. Halterung	E	F	Artikelnr. Sensor plus Halterung
32	4 - 4	50	57		50	62	
40	6 - 6	56	63	DH-K032050	55	67	KM-032050
50	6 - 6	64	74		65	77	
63	6 - 7	81	87		80	82	
80	9 - 10	96	104	DH-K063125	97	109	KM-063100
100	10 - 10	114	125	DH-K063125	114	126	
125	18 - 18	138	150		137	149	KM-125000
160	25 - 27	180	180	DH-K160200			
200	24 - 26	200	220	DH-K160200			

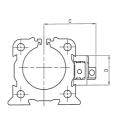
Mikrozylinder Serie M

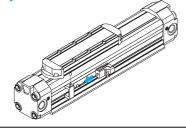




Zyl. Ø	A-B	F	н	HF	Р	R	PR	Artikelnr. Serie M
10	11 - 11	12,5	22,5	35	17	10	27	DH-M10
12	12,5 -12,5	11,5	23,5	35	17	10	27	DH-M12
16	14 - 14	15	25	40	18	13	31	DH-M16
20	18,5 - 18,5	19	27	46	18	17	35	DH-M20
25	19 - 19	18	30	48	20	17	37	DH-M25

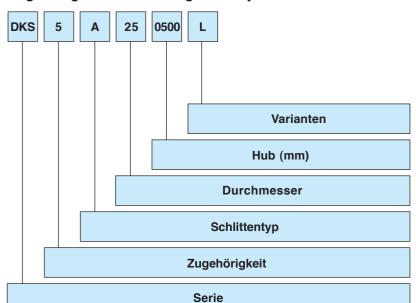
Bei Bestellung der Halterung für versenkten Sensor Serie DF-... zur Artikelnummer Suffix DF hinzufügen.


Kurzhubzylinder Serie W (kein Befestigungselement nötig)



				32					
				11-10					
Α	26,8	28,8	31,3	35,3	39,5	44	52	60,5	71

Kolbenstangenlose Zylinder Serie S1



Zyl. Ø	A-B	С	D	Artikelnr. Halterung
25	25 - 35	34	21	DH-S25
32	35 - 35	39	22	DH-S32
40	50 - 50	46	29	DH-S40
50	60 - 60	54	35	DH-S50

Magnetträger für kolbenstangenlose Zylinder der Serien S-V

SERIE

DKS = Magnetträger

ZUGEHÖRIGKEIT

5 = Kolbenstangenlose Zylinder Serien S5 - VL1

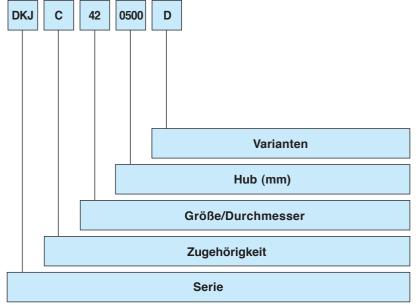
GRÖßE SCHLITTENTYP

- A = Standardschlitten (S5 Ø 25 32)
- **C** = mittellanger Schlitten (S5 VL1)
- **D** = langer Schlitten (S5 VL1)
- = doppelter mittellanger Schlitten (VL1)

DURCHMESSER

25 - 32 - 40 - 50 mm

HUB


Läge in mm

VARIANTEN

D = doppelte Möglichkeit zur Unterbringung der freiliegenden Reedschalter

ANMERKUNG: alle Magnetträger werden mit Zubehör für den Anschluß geliefert. Der Magnetschalter DH-200 muß separat bestellt werden.

Magnetträger für Führungseinheiten der Serie J

DKJ = Magnetträger

ZUGEHÖRIGKEIT

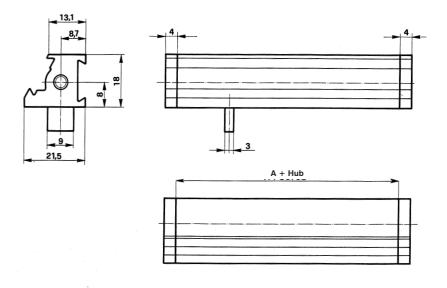
- A = Führungseinheit für Zylinder ISO 6431 -6432 J14 - J14B - J16 - J16B -J17 -J17B
- C = Führungseinheit für kolbenstangenlose Zylinder mit Standardschlitten J30
- **D** = Führungseinheit für kolbenstangeniose Zylinder mit langem Schlitten J31
- Führungseinheit für Kurzhubzylinder J51 - J52 - J53 J54 - J56

GRÖßE / DURCHMESSER

Größe	Führungseinheit	Ø Zylinder
	0 = 16	0 = 16
	2 =25	2 = 25
	3 =32	3 = 32
	4 = 40	4 = 40
	5 = 50	5 = 50
	6 =63	6 = 63
	7 =80	7 =80
	8 =100	8 =100

HUB

Länge in mm


VARIANTEN

D = doppelte Möglichkeit zur Unterbringung der freiliegenden Reedschalter mit rechtem Mitnehmerstift

ANMERKUNG: alle Magnetträger werden mit Zubehör für den Anschluß geliefert. Der Magnetschalter DH-200 muß separat bestellt werden.

Magnetträger mit doppelter Möglichkeit zur: Unterbringung der freiliegenden Reedschalter Serie DKS D/ DKJ D

Im Lieferumfang enthaltenes Anschlußzubehör:

Serie S5 - VL1

Artikelnr. DKK62

Serie J30 - J31

Zyl. Ø	Artikelnr.
32-40	DKK75040
50	DKK75050
63-80	DKK75080

Koppelbar mit Magnetträger Serie DKJ ... D

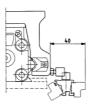
Abmessungen Magnetträger für kolbenstangenlose Zylinder (Serie DKS ... D) und Führungseinheiten für kolbenstangenlose Zylinder (Serie DKJ ... D).

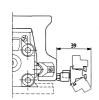
	Kolbenstangenlose Zylinder								
		Serie S5		Serie VL1					
Zyl.	A + HUB								
Ø	S	М	L	М	L	2 M			
25	172 201 267		201	201 267					
32	212 247 342		247	342	453				
40	1	- 292 404		292	404	535			
50	-	364	504	364	504	680			

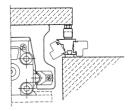
	Führungseinheiten für Kolbenstangenlose Zylinder						
	Serie J30 - J31						
	A + HUB						
Größe	Zyl. Ø J30 J31						
40	25	200	295				
50	32	250	380				
63	40	300	450				
80	50	350	550				

Schlittentypen:

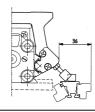
 $\mathbf{S} = Standard$

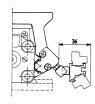

M = mittellanger SchlittenL = langer Schlitten

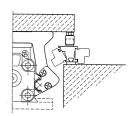

2M = doppelter mittellanger


Schlitten

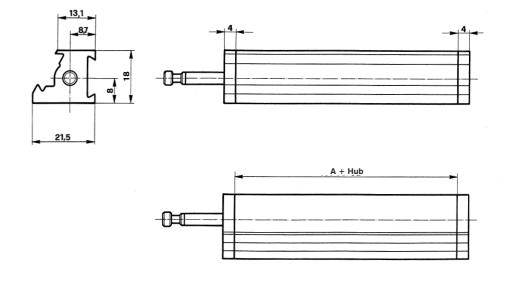
 Die Befestigungen des Magnetträgers variieren entsprechend der Größe der Führungseinheit.


Montagebeispiel mit kolbenstangenlosem Zylinder Serie S5





Montagebeispiel mit kolbenstangenlosem Zylinder Serie VL1

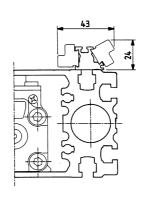


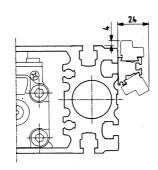
Magnetträger mit doppelter Möglichkeit zur Unterbringung der freiliegenden Reedschalter Serie DKJ....D

Adapter für: Serie J14-J16-J17

Artikelnr.
DKK72

Adapter für: Serie J51-J52-J53-J54-J56


Zyl. Ø	Artikelnr.					
25	DKK74025					
32	DKK74032					
40	DKK74040					
50	DKK74050					
63	DKK74063					
80	DKK74080					
100	DKK74100					


Abmessungen Magnetträger für Führungseinheiten für kolbenstangenlose und Kurzhubzylinder (Serie DKJE ... D) und für Führungseinheiten für Zylinder ISO 6431 - 6432 (Serie DKJA ... D).

Größe	Zyl. Ø	Führungseinheiten für Kurzhubzylinder Serie J51/J52/J53/J54/J56 A + HUB
25	20	52
32	25	52
40	32	52
50	40	52
63	50	52
80	63	52
100	80	52

0	Führungseinheiten für Zylinder ISO 6431 - 6432					
Größe	Serie J14/J16/J17					
	A + HUB					
16	80					
25	100					
32	100					
40	100					
50	100					
63	100					
80	100					
100	100					

Montagebeispiel mit Führungseinheiten Serie J...

Spule U1 - Flansch 22 mm verwendbar mit Pilotventil U1										
Тур	Maximale Abmessur	ngen	Dauer ED* Absorption fortlaufend beim Anlauf				Masse kg	Nenn- spannung	Artikelnr	
_		30		3,5W	3,5W	-	±10%	0,06	12 Vcc	DA-0050
100	21.5			3,300					24 Vcc	DA-0051
V W 35	31,5 28,5	P	100%	5VA (max)	7,8VA (max)	±5%	±10%		24V/50-60Hz	DA-0106
INIVERED OF - 005									110V/50-60Hz	DA-0108
iii O	@100 Ø16								230V/50-60Hz	DA-0124
Spule U2 - Flan	sch 30 mm verwendbar mit	t Pilotvent	il U2							
			100%	11W	44344	_	100/	- 0,10	12 Vcc	DB-0501
V-2a VA 10 V	16.2	-37,5			11W		±10%		24 Vcc	DB-0502
CE * CE * CE		13.2		10VA (max)	16VA (max)	±5%	±10%		24V/50-60Hz	DB-0507
	1								110V/50-60Hz	DB-0509
									230V/50-60Hz	DB-0510
Spule U3 - Flan	sch 30 mm verwendbar mi	t Pilotvent	il U1		ı	ı	ı			
	29,5 →	37	100%	2,5W	2,5W	-	±10%	0,08	12 Vcc	DC-0301
****									24 Vcc	DC-0302
75 V - V - V - V - V - V - V - V - V - V	31,5 29	E		3,3VA (max)	5VA (max)	±5%	±10%		24V/50-60Hz	DC-0307
ELINAN BC. C		010.2							110V/50-60Hz	DC-0309
	<u> </u>	Ø16.5							230V/50-60Hz	DC-0310
Ohne Eingriff in den pneumatischen Kreislauf austauschbar. Andere Spannungen auf Anfrage. Um 360° schwenkbar. Mit Drähten der Klasse H gewickelt. Umgebungstemperatur: -10 ÷ +45°C. Mediumstemperatur: -10 ÷ +95°C.			dı	Bei fortlaufendem Betrieb wird das Funktionieren der Speurch die Betriebstemperatur nicht beeinträchtigt, wenn Einsatz in durchlüfteter Umgebung erfolgt.						
Steckverbinder für Spule U1			Steckverbinder DIN 43650 für Spulen U2 und U3					nd U3		
Тур	Abmessungen	Abmessungen Artikelnr.		Тур		Abmessu		ngen	Artikelnr.	
	315 P99	AM-5110					-31	8	Pg.9	AM-5111

Schutzart IP 65. Kabelverbindung PG 9. Auf der Spule um 180° schwenkbar. Auf Anfrage mit Leuchtanzeige oder anderen Arten Schutzart IP 65. Kabelverbindung PG 9. Auf der Spule um 180° schwenkbar. Auf Anfrage mit Leuchtanzeige oder anderen Arten